Non-Convex Homogenization and Applications to (Ferromagnetic) Shape-Memory Polycrystals
非凸均质化及其在(铁磁)形状记忆多晶中的应用
基本信息
- 批准号:1108847
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ponte CastanedaDMS-1108847 The main objective of this proposal is the development of mathematical tools for modeling the shape-memory effect and pseudo-elasticity in shape-memory polycrystals. For this purpose, the investigator makes use of suitable generalizations of the linear comparison homogenization methods for these material systems, incorporating the effects both of crystallographic texture and of morphological texture (as determined by the two-point correlations of the microstructures). The main mathematical challenge arises as a consequence of the lack of convexity (or, more precisely, quasi-convexity) of the relevant energy functions. It is known that this breakdown of convexity leads to the development of additional microstructures at the single crystal level, which lies at the heart of the shape-memory effect. Because of this, linear comparison estimates are also developed for the "relaxation" (or quasi-convexification) of single-crystal shape-memory alloys (SMAs), exploiting a recently uncovered connection between homogenization at the polycrystal level and relaxation at the single-crystal level. The project results in novel and highly efficient multi-scale modeling techniques capable of handling complex microstructures, coupled strongly nonlinear response, microstructure evolution, and the possible development of instabilities. The mathematical techniques developed in this work are of broad application to large classes of polymeric, metallic, biological, and geological material systems, including multi-functional materials, and lend themselves to numerical implementation in constitutive subroutines for use with standard numerical packages. The shape-memory effect is the ability of certain materials to recover, upon heating, apparently permanent deformation sustained below a certain critical temperature. This effect is usually accompanied by pseudo-elasticity whereby single-crystal samples of these materials are observed to undergo fairly large strains (in the order of 10%) at nearly constant stress, which is fully recovered upon unloading. These two properties make shape-memory alloys (SMAs) very attractive as low-frequency, robust actuators and sensing devices for a variety of novel technological applications. However, SMAs are normally used in polycrystalline form, typically as wires, or thin strips and films, where the shape-memory effect is much reduced. For this reason, it is essential to understand and model the relations between the single-crystal behavior, the microstructure, and the macroscopic behavior of the polycrystals. Improvements in the modeling of SMA polycrystals should result in improved performance for these materials, which are being used extensively in industry, as actuators, sensors, couplings, and electrical connectors, as well as in an ever increasing number of medical and robotics applications.
Ponte Castanedadms-1110847该建议的主要目的是开发用于对形状内存效应和伪弹性建模的数学工具。 为此,研究者利用了这些物质系统的线性比较均质化方法的合适概括,并结合了晶体学纹理和形态纹理的影响(由微结构的两点相关性确定)。 主要的数学挑战是由于缺乏相关能量函数的凸性(或更确切地说是准跨性别)的结果。 众所周知,这种凸度的分解导致在单晶水平上开发其他微观结构,这是形状记忆效应的核心。 因此,也为单晶形状 - 内存合金(SMA)的“弛豫”(或准转换)开发了线性比较估计,从晶体水平。 该项目导致了能够处理复杂的微观结构,强烈的非线性响应,微结构演变以及不稳定性的可能发展的新型和高效的多尺度建模技术。 这项工作中开发的数学技术广泛应用于大量的聚合物,金属,生物学和地质材料系统,包括多功能材料,并借用了本构型子例程中的数值实施,可与标准数值包一起使用。 形状记忆效应是某些材料在加热后恢复的能力,显然是在一定临界温度以下的永久变形。 这种效果通常伴随着伪弹性,从而观察到这些材料的单晶样品在几乎恒定的应力下会经历相当大的菌株(以10%的速度),这在卸载后已完全恢复。 这两种特性使形状内存合金(SMA)非常有吸引力,例如低频,健壮的执行器和传感设备,用于各种新型技术应用。 但是,SMA通常以多晶形式使用,通常用作电线,或细条和薄膜,其中形状 - 记忆效果大大降低。 因此,必须了解和建模单晶行为,微结构和多晶的宏观行为之间的关系。 SMA多晶建模的改进应改善这些材料的性能,这些材料在行业中广泛使用,作为执行器,传感器,耦合和电气连接器,以及越来越多的医疗和机器人应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Ponte Castaneda其他文献
Pedro Ponte Castaneda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Ponte Castaneda', 18)}}的其他基金
Magneto-Active Elastomers: Homogenization, Instabilities and Relaxation
磁活性弹性体:均质化、不稳定性和松弛
- 批准号:
1613926 - 财政年份:2016
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Non-Linear Homogenization of Porous Anisotropic Materials: Applications to Plastic and Magnetic Shape-Memory Alloys
多孔各向异性材料的非线性均质化:在塑料和磁性形状记忆合金中的应用
- 批准号:
1332965 - 财政年份:2013
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Pattern-Changing Instabilities and Giant Magnetostriction in Periodic Magnetoelastic Composites
周期性磁弹性复合材料中的图案变化不稳定性和巨磁致伸缩
- 批准号:
1068769 - 财政年份:2011
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Fiber-Reinforced Polymeric Material Systems: A Multi-Scale, Elasto-Viscoplastic Homogenization Approach
纤维增强聚合物材料系统:多尺度弹粘塑性均质化方法
- 批准号:
0969570 - 财政年份:2010
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Homogenization-Based Constitutive Models for Magnetorheological Elastomers at Finite Strain
有限应变磁流变弹性体基于均质化的本构模型
- 批准号:
0708271 - 财政年份:2007
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Finite-Strain, Constitutive Models for Semi-Crystalline Polymers
半结晶聚合物的有限应变本构模型
- 批准号:
0654063 - 财政年份:2007
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
NATO Advanced Research Workshop on Nonlinear Homogenization and Applications to Composites, Polycrystals and Smart Materials; June 23-26, 2003; Kazimierz Dolny, Poland
北约非线性均质化及其在复合材料、多晶和智能材料中的应用高级研究研讨会;
- 批准号:
0305443 - 财政年份:2003
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
US-France Cooperative Research: Field Fluctuations, Microstructure Evolution and Coupled Phenomena in Random Heterogeneous Materials
美法合作研究:随机异质材料中的场涨落、微观结构演化和耦合现象
- 批准号:
0231867 - 财政年份:2003
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Nonlinear Homogenization and Applications to Porous and Nematic Elastomers
非线性均质化及其在多孔和向列弹性体中的应用
- 批准号:
0204617 - 财政年份:2002
- 资助金额:
$ 23.25万 - 项目类别:
Continuing grant
Macroscopic Behavior and Field Fluctuations in Random Heterogeneous Materials: Theory and Applications
随机异质材料的宏观行为和场涨落:理论与应用
- 批准号:
0201454 - 财政年份:2002
- 资助金额:
$ 23.25万 - 项目类别:
Continuing grant
相似国自然基金
基于凸优化的相控阵-天线罩系统一体化方向图高效综合方法研究
- 批准号:62301379
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于调控巨噬细胞Integrin β2构象的种植体表面纳米圆凸阵列构建及其改善糖尿病种植体骨结合的研究
- 批准号:82301122
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电励磁双凸极起动发电机多模态广域高性能控制研究
- 批准号:52377046
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非凸复合优化问题的邻近型方法研究与应用
- 批准号:12301409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氧化应激通过m6A修饰下调凹侧肌肉干细胞ESR1表达在青少年特发性脊柱侧凸中的机制研究
- 批准号:82302657
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Newton-Okounkov 凸体を用いたシューベルト・カルキュラスの研究
使用牛顿-奥孔科夫凸体研究舒伯特微积分
- 批准号:
24K16902 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
最適化アルゴリズムと凸代数幾何
优化算法和凸代数几何
- 批准号:
24K06841 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
- 批准号:
2340713 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Continuing Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
- 批准号:
2337630 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Continuing Grant
凹凸に対応可能なクジラ用ローバによるマッコウクジラの捕食行動解明
使用可以处理不平坦表面的鲸鱼漫游车来阐明抹香鲸的进食行为
- 批准号:
23K22709 - 财政年份:2024
- 资助金额:
$ 23.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)