CSR: Small: On Modeling Software Dynamics for Feedback Computing

CSR:小:关于反馈计算的软件动态建模

基本信息

项目摘要

This project develops science and technology for ensuring performance stability of large-scale software systems, such as resource management mechanisms used in data centers. The term "stability" is used here in a control-theoretic sense that applies to dynamical systems and roughly means freedom from divergence a range of desired system states. Performance stability refers to stability of performance parameters, such as latency, response time, service throughput, utilization, cache hit ratio, or timeout rate. The project develops the foundations and tools necessary to ensure software stability, and to diagnose and undo root causes of unstable behavior when it occurs in deployed systems. A significant contribution lies in exploring rules and guidelines that, if obeyed, allow reasoning about software stability in a compositional manner, such that stability of composite systems can be inferred from stability of components. Compositional stability analysis of software performance is facilitated by advances in control theory such as Passivity Theory and the Theory of Positive and Dissipative Systems. These advances offer a wealth of results on stability and compositionality for a restricted category of non-linear systems that fits software models. Performance stability challenges have been largely overlooked in software design. They are not typically manifest in small systems, but grow with the size and complexity of systems. The trend towards more software consolidation and outsourcing of computing services entails more complexity, more layering, and more interactions among various resource management mechanisms, making it harder to anticipate side-effects, and more likely there will be stability problems. The project improves the current understanding of the design, execution, and management of large systems that exploit feedback mechanisms to achieve performance and robustness objectives. Educational activities include incorporation of project elements into several courses taught by the PI, and involvement of undergraduate students in the research. Outreach activities include an on-campus "Feedback Computing Day", a tutorial on feedback computing to be offered in conjunction with a major research conference, and efforts by the PI to recruit students from under-represented groups. Dissemination activities include documentation of results of the research in a book by the PI, and efforts to transition technology through collaborators in industry.
该项目开发确保大型软件系统性能稳定性的科学技术,例如数据中心使用的资源管理机制。此处使用的术语“稳定性”是在控制理论意义上使用的,适用于动力系统,并且大致意味着不偏离一系列期望的系统状态。性能稳定性是指性能参数的稳定性,例如延迟、响应时间、服务吞吐量、利用率、缓存命中率或超时率。该项目开发了必要的基础和工具,以确保软件稳定性,并诊断和消除已部署系统中出现的不稳定行为的根本原因。一个重要的贡献在于探索规则和指南,如果遵守这些规则和指南,则允许以组合方式推理软件稳定性,从而可以从组件的稳定性推断出复合系统的稳定性。无源理论和正耗散系统理论等控制理论的进步促进了软件性能的组合稳定性分析。这些进步为适合软件模型的受限非线性系统类别的稳定性和组合性提供了丰富的结果。软件设计中很大程度上忽视了性能稳定性挑战。它们通常不会在小型系统中显现出来,而是随着系统的规模和复杂性而增长。更多软件整合和计算服务外包的趋势导致各种资源管理机制之间更加复杂、更加分层和更多交互,使得更难以预测副作用,并且更有可能出现稳定性问题。该项目提高了当前对大型系统的设计、执行和管理的理解,这些系统利用反馈机制来实现性能和稳健性目标。教育活动包括将项目元素纳入 PI 教授的几门课程中,以及本科生参与研究。外展活动包括校园内的“反馈计算日”、与重大研究会议结合提供的反馈计算教程,以及 PI 努力从代表性不足的群体中招收学生。传播活动包括 PI 将研究结果记录在书中,以及通过行业合作者实现技术转型的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tarek Abdelzaher其他文献

Scheduling IDK classifiers with arbitrary dependences to minimize the expected time to successful classification
调度具有任意依赖性的 IDK 分类器,以最大限度地缩短成功分类的预期时间
  • DOI:
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tarek Abdelzaher; Kunal Agrawal
  • 通讯作者:
    Kunal Agrawal

Tarek Abdelzaher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tarek Abdelzaher', 18)}}的其他基金

Collaborative Research: CPS: Medium: Real-time Criticality-Aware Neural Networks for Mission-critical Cyber-Physical Systems
合作研究:CPS:中:用于关键任务网络物理系统的实时关键性感知神经网络
  • 批准号:
    2038817
  • 财政年份:
    2021
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
CSR: Small: Data Services for Reliable Crowdsensing in Urban Spaces
CSR:小型:城市空间中可靠的群体感知的数据服务
  • 批准号:
    1618627
  • 财政年份:
    2016
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
Need-Based Sponsorship of Student Travel to IEEE MASS 2015; October 19-22, 2015; Dallas, TX
基于需求的 IEEE MASS 2015 学生旅行赞助;
  • 批准号:
    1547552
  • 财政年份:
    2015
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
FIA-NP: Collaborative Research: Named Data Networking Next Phase (NDN-NP)
FIA-NP:协作研究:命名数据网络下一阶段 (NDN-NP)
  • 批准号:
    1345266
  • 财政年份:
    2014
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Cooperative Agreement
II-NEW: Vehicular Instrumentation for Green Sensor-Enabled Research
II-新:用于绿色传感器研究的车辆仪器
  • 批准号:
    1059294
  • 财政年份:
    2011
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
  • 批准号:
    1040380
  • 财政年份:
    2010
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Continuing Grant
II-New: Towards Green Data Centers: A Testbed for Thermo-Computational Dynamics
II-新:迈向绿色数据中心:热计算动力学测试平台
  • 批准号:
    0958314
  • 财政年份:
    2010
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Continuing Grant
CPS: Medium: The Ectokernel Approach: A Composition Paradigm for Building Evolvable Safety-critical Systems from Unsafe Components
CPS:中:外内核方法:从不安全组件构建可演化安全关键系统的组合范式
  • 批准号:
    1035736
  • 财政年份:
    2010
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
NetSE: Medium: A Data Mining Approach to Diagnostic Debugging in Sensor Networks
NetSE:Medium:传感器网络中诊断调试的数据挖掘方法
  • 批准号:
    0905014
  • 财政年份:
    2009
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
CSR: Small: Green Farms: Towards a Stable Energy Optimization Architecture for Data Centers
CSR:小型:绿色农场:迈向数据中心稳定的能源优化架构
  • 批准号:
    0916028
  • 财政年份:
    2009
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CSR: Small: Cascading Failures Modeling and Mitigation in the Internet of Things
CSR:小:物联网中的级联故障建模和缓解
  • 批准号:
    2302094
  • 财政年份:
    2023
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: An Integrated Approach to Performance Modeling and Optimization of Big-data Scientific Workflows
CSR:小型:协作研究:大数据科学工作流程性能建模和优化的综合方法
  • 批准号:
    1560698
  • 财政年份:
    2015
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: An Integrated Approach to Performance Modeling and Optimization of Big-data Scientific Workflows
CSR:小型:协作研究:大数据科学工作流程性能建模和优化的综合方法
  • 批准号:
    1525537
  • 财政年份:
    2015
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: An Integrated Approach to Performance Modeling and Optimization of Big-data Scientific Workflows
CSR:小型:协作研究:大数据科学工作流程性能建模和优化的综合方法
  • 批准号:
    1526134
  • 财政年份:
    2015
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
CSR: Small: Dynamically Reconfigurable Architectures for Time-Varying Image Constraints (DRASTIC) Based on Local Modeling and User Constraint Prediction
CSR:小型:基于局部建模和用户约束预测的时变图像约束 (DRASTIC) 动态可重构架构
  • 批准号:
    1422031
  • 财政年份:
    2014
  • 资助金额:
    $ 45.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了