Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
基本信息
- 批准号:1332196
- 负责人:
- 金额:$ 6.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-11-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI plans to investigate projects in three areas, related by the theme of the complex Monge-Ampere equation. The first project will build on the PI's work with Tosatti which gave an analogue of Yau's Theorem for compact Hermitian manifolds. The PI proposes to generalize these estimates and apply them to obtain new results on the Bott-Chern space of a complex manifold. The second project deals with the Kahler-Ricci flow - which can be regarded as the parabolic complex Monge-Ampere equation - on algebraic varieties. As part of a program to understand the analytic minimal model program, the PI and Song investigated the Kahler-Ricci flow on algebraic varieties and gave necessary conditions under which the flow contracts an exceptional divisor. The PI proposes to extend these results to deal with more general singularities and also to study the behavior of the curvature tensor along the Kahler-Ricci flow. The final project concerns the Calabi-Yau equation on symplectic manifolds. Donaldson conjectured that the complex Monge-Ampere equation solved by Yau has an analogue for symplectic 4-manifolds with compatible almost complex structures.He gave applications of his conjecture to symplectic topology. Special cases of Donaldson's conjecture were established by the PI and his co-authors. The PI will undertake an analysis of the structure of the blow-up set for the Calabi-Yau equation, with the ultimate goal of proving Donaldson's conjecture.An important problem in mathematics, and physics, is to understand the interaction between geometry and differential equations. This proposal concerns a well-known and centuries-old mathematical object called the Monge-Ampere equation. This equation arises naturally in the study of geometry and is closely related to Einstein's equations in physics. A main goal of this project is to find applications of the Monge-Ampere equation to more general and commonly occuring geometric objects where it was not previously known that a connection exists. By finding new relationships between this classical differential equation and geometry, the PI aims to further our understanding of what kind of geometric structures can exist. In addition, the Monge-Ampere equation is deeply related to geometry via an associated heat flow. It is expected that this heat flow will help us understand some old and difficult problems concerning solutions to algebraic equations. Indeed, the solutions of algebraic equations define geometric objects, and the heat flow deforms these objects and can extract information from them. The PI will investigate the precise behavior of the Monge-Ampere heat flow on such geometric objects.
PI 计划调查三个领域的项目,这些领域与复杂的 Monge-Ampere 方程的主题相关。 第一个项目将建立在 PI 与 Tosatti 的合作基础上,该工作给出了紧致埃尔米特流形的丘氏定理的模拟。 PI 建议推广这些估计并应用它们来获得复杂流形的 Bott-Chern 空间上的新结果。 第二个项目涉及代数簇上的卡勒-里奇流(Kahler-Ricci flow)——它可以被视为抛物线复数 Monge-Ampere 方程。 作为理解解析最小模型程序的一部分,PI 和 Song 研究了代数簇上的 Kahler-Ricci 流,并给出了该流收缩异常除数的必要条件。 PI 建议扩展这些结果以处理更一般的奇点,并研究曲率张量沿 Kahler-Ricci 流的行为。 最终项目涉及辛流形上的 Calabi-Yau 方程。 唐纳森猜想丘所解的复Monge-Ampere方程可以类比具有兼容的近复结构的辛4流形。他把他的猜想应用到了辛拓扑中。唐纳森猜想的特例是由 PI 和他的合著者建立的。 PI将对Calabi-Yau方程的爆炸集结构进行分析,最终目标是证明唐纳森猜想。数学和物理中的一个重要问题是理解几何和微分方程之间的相互作用。 该提议涉及一个众所周知的、有数百年历史的数学对象,称为蒙日-安培方程。 这个方程在几何研究中自然出现,与物理学中的爱因斯坦方程密切相关。 该项目的主要目标是找到 Monge-Ampere 方程在更一般和更常见的几何对象中的应用,这些对象以前不知道存在联系。 通过寻找这个经典微分方程和几何之间的新关系,PI 旨在进一步了解可以存在什么样的几何结构。 此外,蒙日-安培方程通过相关的热流与几何形状密切相关。 预计这种热流将帮助我们理解一些有关代数方程解的老问题和难题。 事实上,代数方程的解定义了几何对象,热流使这些对象变形并可以从中提取信息。 PI 将研究 Monge-Ampere 热流在此类几何物体上的精确行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Weinkove其他文献
Benjamin Weinkove的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Weinkove', 18)}}的其他基金
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
- 批准号:
2005311 - 财政年份:2020
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Elliptic and Parabolic Partial Differential Equations on Manifolds
流形上的椭圆和抛物型偏微分方程
- 批准号:
1709544 - 财政年份:2017
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Emphasis Year in Geometric Analysis at Northwestern University
西北大学几何分析重点年
- 批准号:
1454077 - 财政年份:2015
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Nonlinear PDEs and complex geometry
非线性偏微分方程和复杂几何
- 批准号:
1406164 - 财政年份:2014
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
- 批准号:
1105373 - 财政年份:2011
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
- 批准号:
0848193 - 财政年份:2008
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
PDE's in complex and symplectic geometry
复辛几何中的偏微分方程
- 批准号:
0804099 - 财政年份:2008
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Parabolic flows and canonical metrics in Kahler geometry.
卡勒几何中的抛物线流和规范度量。
- 批准号:
0504285 - 财政年份:2005
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
相似国自然基金
基于抛物线多视角影像的小行星跳跃机器人高精度定位方法研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于并行差分法的三维宽角抛物方程电波传播模型研究
- 批准号:61901532
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高强钢管混凝土(HSCFST)抛物线拱的稳定性研究
- 批准号:51878188
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
复杂海洋背景中电大目标电磁散射特性的抛物线方程方法研究
- 批准号:61701232
- 批准年份:2017
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
李超代数的parabolic范畴O的若干问题
- 批准号:11371278
- 批准年份:2013
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
A new approach for the existence problem of the complex structure by applying parabolic flows
抛物线流解决复杂结构存在性问题的新方法
- 批准号:
19K14543 - 财政年份:2019
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Study on Complex Ginzburg-Landau Equations Based on the Theory of Parabolic Equations
基于抛物型方程理论的复Ginzburg-Landau方程研究
- 批准号:
19J12431 - 财政年份:2019
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory of implosion in complex dynamics in dimensions one and higher and its applications
一维及更高维复杂动力学的内爆理论及其应用
- 批准号:
16K05213 - 财政年份:2016
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elliptic and parabolic complex Monge-Ampere equations on compact manifolds
紧流形上的椭圆和抛物线复数 Monge-Ampere 方程
- 批准号:
1105373 - 财政年份:2011
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Optimal and Robust Operations of Complex Processes withNon-Gaussian Distributed Uncertain Variables under ChanceConstraints - Extension to Model Predictive Control of Parabolic Partial Differential Equation Systems
机会约束下非高斯分布不确定变量复杂过程的最优鲁棒运行——抛物型偏微分方程系统模型预测控制的推广
- 批准号:
182502969 - 财政年份:2010
- 资助金额:
$ 6.14万 - 项目类别:
Research Grants