III: Small: Integrated Digital Event Archiving and Library (IDEAL)

III:小型:集成数字事件归档和图书馆 (IDEAL)

基本信息

项目摘要

The Integrated Digital Event Archive and Library (IDEAL) system addresses the need for combining the best of digital library and archive technologies in support of stakeholders who are remembering and/or studying important events. It extends the work at Virginia Tech on the Crisis, Tragedy, and Recovery network (see http://www.ctrnet.net) to handle government and community events, in addition to a range of significant natural or manmade disasters. It addresses needs of those interested in emergency preparedness/response, digital government, and the social sciences. It proves the effectiveness of the 5S (Societies, Scenarios, Spaces, Structures, Streams) approach to intelligent information systems by crawling and archiving events of broad interest. It leverages and extends the capabilities of the Internet Archive to develop spontaneous event collections that can be permanently archived as well as searched and accessed, and of the LucidWorks Big Data software that supports scalable indexing, analyzing, and accessing of very large collections. Through a new model-based approach to intelligent focused crawling, it improves the quality (e.g., accuracy, coverage, and elimination of noise) of collections of webpages so as to ensure comprehensiveness, balance, and low bias, as is needed for scholarly study of historically important events by social scientists. It incorporates a range of visualization capabilities in support of key stakeholder communities, including archivists, librarians, researchers, scholars, and the general public. IDEAL connects the processing of tweets and webpages, combining informal and formal media, to automatically detect important events, as well as to support building collections on chosen general or specific topics. It supports integration of multiple types and at multiple levels, including key models about the event it is crawling (event models), the sources of information about the event (source models), the mechanisms used for disseminating information about the event (publishing venue models), and the entities related to the event (society /organization models). Integrated services include topic identification, categorization (building upon special ontologies being devised), sentiment analysis, and visualization of data, information, and context.The IDEAL website (http://www.eventsarchive.org) supports searching, browsing, analyzing, and visualizing of event collections (of both tweets and webpages), as well as access to project software, methods, findings, publications, and other results. Usage is encouraged of the integrated system along with a growing number of collections, as well as of particular tools such as for focused crawling, which should aid curators to avoid non-relevant content while including a broader range of sources, improving significantly upon current crawling and archiving methods. Important data and information on events of interest are saved rather than lost, helping preserve our history and culture, in support of public interest, education, policy making, historical analyses, and comparative studies. Students studying sociology, human-computer interaction, digital libraries, information retrieval, computational linguistics, multimedia, and hypertext are gaining experience and contributing in scholarly studies, algorithms, software, interfaces, and big data handling.
集成数字事件档案和图书馆 (IDEAL) 系统满足了将最佳数字图书馆和档案技术相结合的需求,以支持正在记忆和/或研究重要事件的利益相关者。它扩展了弗吉尼亚理工大学危机、悲剧和恢复网络(参见 http://www.ctrnet.net)的工作,以处理政府和社区事件以及一系列重大自然或人为灾难。它满足了对应急准备/响应、数字政府和社会科学感兴趣的人们的需求。它通过抓取和归档广泛感兴趣的事件,证明了 5S(社会、场景、空间、结构、流)方法对智能信息系统的有效性。它利用并扩展了互联网档案馆的功能来开发可永久存档以及搜索和访问的自发事件集合,以及支持可扩展索引、分析和访问超大型集合的 LucidWorks 大数据软件的功能。通过一种新的基于模型的智能聚焦爬行方法,提高网页采集的质量(如准确性、覆盖率、消除噪音等),以保证学术研究所需的全面性、平衡性和低偏差社会科学家对历史上重要事件的研究。它包含一系列可视化功能,为主要利益相关者社区提供支持,包括档案管理员、图书馆员、研究人员、学者和公众。 IDEAL 连接推文和网页的处理,结合非正式和正式媒体,自动检测重要事件,并支持构建所选一般或特定主题的集合。支持多种类型、多层次的集成,包括所爬取的事件的关键模型(事件模型)、事件信息的来源(源模型)、事件信息传播的机制(发布场地模型) ),以及与事件相关的实体(社会/组织模型)。集成服务包括主题识别、分类(基于正在设计的特殊本体)、情感分析以及数据、信息和上下文的可视化。IDEAL 网站 (http://www.eventsarchive.org) 支持搜索、浏览、分析、事件集合(推文和网页)的可视化,以及对项目软件、方法、发现、出版物和其他结果的访问。鼓励使用集成系统以及越来越多的馆藏以及特定工具,例如集中爬行,这将有助于策展人避免不相关的内容,同时包含更广泛的来源,从而显着改进当前的爬行和归档方法。有关感兴趣事件的重要数据和信息得到保存而不是丢失,有助于保护我们的历史和文化,支持公共利益、教育、政策制定、历史分析和比较研究。学习社会学、人机交互、数字图书馆、信息检索、计算语言学、多媒体和超文本的学生正在学术研究、算法、软件、界面和大数据处理方面获得经验并做出贡献。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Twitter-Based Knowledge Graph for Researchers
为研究人员提供基于 Twitter 的知识图谱
  • DOI:
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vincent, Kyle;Meno, Emma
  • 通讯作者:
    Meno, Emma
Teaching Natural Language Processing through Big Data Text Summarization with Problem-Based Learning
通过大数据文本摘要和基于问题的学习来教授自然语言处理
  • DOI:
    10.2478/dim-2020-0003
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liuqing Li;Jack Geissinger;William A. Ingram;E. Fox
  • 通讯作者:
    E. Fox
Analysis of Moving Events Using Tweets
使用推文分析移动事件
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patil; Supritha Basavaraj
  • 通讯作者:
    Supritha Basavaraj
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Fox其他文献

Spontaneous regression of hepatic metastases from gastric carcinoma
胃癌肝转移的自发消退
  • DOI:
    10.1002/1097-0142(197202)29:2<472::aid-cncr2820290235>3.0.co;2-u
  • 发表时间:
    1972-02-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    S. Rosenberg;Edward Fox;W. Churchill
  • 通讯作者:
    W. Churchill
A label-free fiber ring laser biosensor for ultrahigh sensitivity detection of Salmonella Typhimurium.
一种用于超高灵敏度检测鼠伤寒沙门氏菌的无标记光纤环激光生物传感器。
  • DOI:
    10.1016/j.bios.2023.115337
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Shi Qiu;B. Liu;Yuan Leng;Edward Fox;Xian Zhou;B. Yan;X. Sang;Keping Long;Yanjun Fu;Xin
  • 通讯作者:
    Xin
A single‐arm, open‐label study of alemtuzumab in treatment‐refractory patients with multiple sclerosis
阿仑单抗治疗难治性多发性硬化症患者的单臂、开放标签研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Edward Fox;H. C. Sullivan;Suzanne Gazda;Lori Mayer;L. O’Donnell;K. Melia;S. Lake
  • 通讯作者:
    S. Lake
Varying Dosages of Subcutaneous Unfractionated Heparin and Activated Partial Thromboplastin Time in Hospitalized Antepartum Patients: A Retrospective Cohort Analysis
住院产前患者皮下普通肝素不同剂量和活化部分凝血活酶时间:回顾性队列分析
  • DOI:
    10.1213/ane.0000000000005866
  • 发表时间:
    2022-01-12
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Dalia Elmofty;A. Tucker;Andrew Wuenstel;Paul K. Cheng;Edward Fox;R. Knoebel;Chuanghong Liao;B. Scavone
  • 通讯作者:
    B. Scavone
How Drug Control Policy and Practice Undermine Access to Controlled Medicines
药物管制政策和实践如何破坏受管制药物的获取

Edward Fox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Fox', 18)}}的其他基金

I-Corps: Automated Summarization Technology
I-Corps:自动摘要技术
  • 批准号:
    1924726
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
I-Corps: Automated Summarization Technology
I-Corps:自动摘要技术
  • 批准号:
    1924726
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Global Event and Trend Archive Research (GETAR)
III:小型:协作研究:全球事件和趋势档案研究 (GETAR)
  • 批准号:
    1619028
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SGER: Collaborative Research: Curatorial Work and Learning in Virtual Environments
SGER:协作研究:虚拟环境中的策展工作和学习
  • 批准号:
    0910183
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III:Small:Integrated Digital Library Support for Crisis, Tragedy, and Recovery
III:小:针对危机、悲剧和恢复的综合数字图书馆支持
  • 批准号:
    0916733
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Project: Ensemble: Enriching Communities and Collections to Support Education in Computing
合作项目:Ensemble:丰富社区和馆藏以支持计算教育
  • 批准号:
    0840719
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
SGER: DL-VT416: A Digital Library Testbed for Research Related to 4/16/2007 at Virginia Tech
SGER:DL-VT416:弗吉尼亚理工大学 2007 年 4 月 16 日相关研究的数字图书馆测试平台
  • 批准号:
    0736055
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CPATH CB: Living In the KnowlEdge Society (LIKES)
合作研究:CPATH CB:生活在知识社会(LIKES)
  • 批准号:
    0722259
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Curriculum Development: Digital Libraries
合作研究:课程开发:数字图书馆
  • 批准号:
    0535057
  • 财政年份:
    2006
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Extending Retrieval with Stepping Stones and Pathways
通过垫脚石和途径扩展检索
  • 批准号:
    0307867
  • 财政年份:
    2003
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

靶向非小细胞肺癌ALK融合蛋白新型放射性示踪剂的研制及其初步应用探索
  • 批准号:
    22376125
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合多源异构数据的小微企业经营风险智能识别与应对策略研究
  • 批准号:
    72301188
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Podoplanin调控EGFR信号通路介导NTRK融合基因阳性非小细胞肺癌靶向耐药的机制研究
  • 批准号:
    82373044
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
  • 批准号:
    82371994
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于脂质体-外泌体杂化融合体系的多靶标识别探针用于非小细胞肺癌的诊断研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FET: III: Small: Innovative Approaches for Bias Correction and Systems-level Analysis in Integrated Multi-omics Data
FET:III:小型:集成多组学数据中的偏差校正和系统级分析的创新方法
  • 批准号:
    2203236
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
III: Small: Integrated prediction of intrinsic disorder and disorder functions with modular multi-label deep learning
III:小:通过模块化多标签深度学习对内在无序和无序函数进行集成预测
  • 批准号:
    2125218
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: QUEST: An Integrated Query and Event System on Noisy Streams and Tables
III:小:QUEST:一个关于嘈杂流和表的集成查询和事件系统
  • 批准号:
    1319600
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
III: Small: Topology-based approaches to integrated analysis of transcriptomic, protein interactomic and phenotypic data
III:小:基于拓扑的方法对转录组、蛋白质相互作用组和表型数据进行综合分析
  • 批准号:
    1218201
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
III: Small: AegisDB: Integrated Real-Time Geo-Stream Processing and Monitoring System: A Data-Type-Based Approach
III:小型:AegisDB:集成实时地理流处理和监测系统:基于数据类型的方法
  • 批准号:
    1017926
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了