Discontinuous Petrov Galerkin Methods and Applications
间断 Petrov Galerkin 方法及应用
基本信息
- 批准号:1318916
- 负责人:
- 金额:$ 30.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer simulation of many natural and technological processes relies on robust and efficient algorithms for solution of partial differential equations. In the continuing pursuit of such algorithms, a class of new Discontinuous Petrov-Galerkin (DPG) methods emerged as hybrid methods with a least-squares character. Their unusual stability and localization properties have the potential to expand the research frontiers in high performance computing. This project extends, improves, and identifies new applications for these DPG methods. These methods use a number of local operations, implementable on heterogenous computational clusters, to guarantee stability. Building on the method's known stability properties, the following five projects are proposed: (i) an explicit space-time extension of DPG methods providing a new way to simulate evolution of Friedrichs systems (ii) analysis and incorporation of adaptivity into DPG schemes thereby allowing computational resources to be allocated where they are needed most (iii) understanding DPG methods for harmonic wave phenomena in acoustics, elasticity, and electromagnetics, (iv) design of efficient preconditioners and other fast solution strategies for DPG methods, and (v) new tailor-made computational techniques to simulate biological pattern formation via chemotactic feedback.The proposed research is on a new method to solve partial differential equations, the Discoutinuous Petrov-Galerkin method. Impacts of development of the new method will apply to several areas, including propagation of acoustic, electromagnetic, and seismic waves in heterogenous media, and potential contributions in computational fluid dynamics applied to wind energy. The research component on biological patterns is inspired by questions of immediate relevance in health sciences, including a model for simulating tumor invasion, and simulation of chemotactic cancer cell movement, both intimately related to cells aggregating to form patterns. Finally, trained workforce additions will be accomplished by integrating graduate student involvement into the proposed research.
许多天然和技术过程的计算机模拟依赖于偏微分方程解决方案的鲁棒和有效算法。在继续追求此类算法时,一类新的不连续的彼得 - 盖尔金(DPG)方法出现为具有最小二乘特征的混合方法。它们的异常稳定性和本地化属性有可能在高性能计算中扩展研究前沿。该项目扩展,改进和确定这些DPG方法的新应用程序。这些方法使用许多可在异质计算簇上实现的本地操作来确保稳定性。 Building on the method's known stability properties, the following five projects are proposed: (i) an explicit space-time extension of DPG methods providing a new way to simulate evolution of Friedrichs systems (ii) analysis and incorporation of adaptivity into DPG schemes thereby allowing computational resources to be allocated where they are needed most (iii) understanding DPG methods for harmonic wave phenomena in acoustics, elasticity, and电磁技术的设计有效的预处理和其他快速解决方案策略的DPG方法以及(v)新的量身定制的计算技术,以通过趋化反馈模拟生物模式形成。拟议的研究是对一种新方法,用于求解部分微分方程的新方法。新方法开发的影响将适用于多个领域,包括在异源培养基中传播声学,电磁波和地震波的传播,以及用于风能的计算流体动力学的潜在贡献。生物学模式的研究成分灵感来自健康科学中直接相关性的问题,包括模拟肿瘤侵袭的模型,以及模拟趋化性癌细胞运动的模型,这两者都与汇总到形成模式的细胞密切相关。最后,通过将研究生的参与纳入拟议的研究来实现训练有素的劳动力增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay Gopalakrishnan其他文献
Reduced test spaces for DPG methods using rectangular elements
使用矩形元件减少 DPG 方法的测试空间
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.9
- 作者:
Dow Drake;Jay Gopalakrishnan;A. Harb - 通讯作者:
A. Harb
Mortar Estimates Independent of Number of Subdomains
与子域数量无关的迫击炮估计
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Jay Gopalakrishnan - 通讯作者:
Jay Gopalakrishnan
A Schwarz Preconditioner for a Hybridized Mixed Method
- DOI:
10.2478/cmam-2003-0009 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Jay Gopalakrishnan - 通讯作者:
Jay Gopalakrishnan
A CLASS OF DISCONTINUOUS PETROV-GALERKIN METHODS. PART II: OPTIMAL TEST FUNCTIONS
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jay Gopalakrishnan - 通讯作者:
Jay Gopalakrishnan
Asymptotic and Numerical Techniques for Resonances of Thin
薄共振的渐近和数值技术
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
F. Maseeh;Jay Gopalakrishnan;Shari Moskow;F. Santosa - 通讯作者:
F. Santosa
Jay Gopalakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay Gopalakrishnan', 18)}}的其他基金
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
RTG: Program in Computation- and Data-Enabled Science
RTG:计算和数据支持科学项目
- 批准号:
2136228 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Continuing Grant
New Finite Element Techniques for Simulating Flows and Waves
用于模拟流动和波浪的新有限元技术
- 批准号:
1912779 - 财政年份:2019
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
MRI: Acquisition of a Computing Cluster for Portland Institute for Computational Sciences
MRI:为波特兰计算科学研究所收购计算集群
- 批准号:
1624776 - 财政年份:2016
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
SCREMS: Developing Computational Mathematics at the University of Florida
SCEMS:佛罗里达大学计算数学的发展
- 批准号:
0619080 - 财政年份:2006
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
Improving Mixed Methods by Hybridization and Multigrid Techniques
通过混合和多重网格技术改进混合方法
- 批准号:
0410030 - 财政年份:2004
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant
相似国自然基金
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
- 批准号:12361076
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
非线性椭圆型方程多解问题的高精度算法
- 批准号:11871043
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:面上项目
分数阶Laplace算子广义Neumann边值问题的谱方法研究
- 批准号:11801448
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
积分微分方程的hp时间步进法及其自适应算法
- 批准号:11771298
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
多介质可压缩流体的ALE间断Petrov-Galerkin方法研究
- 批准号:11761054
- 批准年份:2017
- 资助金额:36.5 万元
- 项目类别:地区科学基金项目
相似海外基金
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2020
- 资助金额:
$ 30.2万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2019
- 资助金额:
$ 30.2万 - 项目类别:
Discovery Grants Program - Individual
The Discontinuous Petrov Galerkin Method with Optimal Test Functions for Compressible Flows and Ductile-to-Brittle Phase Transitions
具有最佳测试函数的不连续 Petrov Galerkin 方法用于可压缩流动和延性到脆性相变
- 批准号:
1819101 - 财政年份:2018
- 资助金额:
$ 30.2万 - 项目类别:
Standard Grant