The Discontinuous Petrov Galerkin Method with Optimal Test Functions for Compressible Flows and Ductile-to-Brittle Phase Transitions
具有最佳测试函数的不连续 Petrov Galerkin 方法用于可压缩流动和延性到脆性相变
基本信息
- 批准号:1819101
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims at a further development of the Discontinuous Petrov Galerkin (DPG) Finite Element (FE) method with optimal test functions introduced by Jay Gopalakrishnan and Leszek Demkowicz in 2009. The DPG methodology represents a breakthrough in the Finite Element simulations of challenging Engineering and Science processes. The proposed research directions are: the solution of 2D and 3D compressible flow problems, the modeling of ductile to brittle phase transitions using Phase Fields theories. The method will have a lasting impact on the construction of software for difficult applications requiring high accuracy. Application areas targeted in this project include aerospace (transonic flows) and high energy density electrical motors (insulation failure), building on collaborations with Boeing and the Navy.The DPG method minimizes residuals in the dual norm corresponding to a specified test norm. Computation of the residual requires inversion of the Riesz operator in the test space. With the use of broken test spaces and localizable test norms, the inversion can be done element-wise using standard Galerkin and "enriched" spaces. With the error of inverting the Riesz operator controlled locally, i.e. on the element level, the method automatically guarantees discrete stability for any well-posed linear problem in a Hilbert setting, in the sense of the classic theory of closed operators. The methodology leads to uniform stability for singular perturbation problems and, being a minimization method, does not suffer from any preasymptotic instabilities. The residual is computed rather than estimated and provides a basis for automatic adaptivity. Optimality in the L2-norms does not preclude the Gibbs phenomenon and this project aims at extending the DPG technology to Banach spaces. The first focus area deals with a difficult classical subject, namely compressible Navier-Stokes equations with applications to flow around a three-dimensional wing model and its simplified model, the full potential equation. The second line of research aims at modeling ductile-to-brittle phase transitions in polymers using Phase Field theories, with applications to understanding damage and crack initiation in polymer insulation. In both application areas above, solutions experience strong boundary or/and internal layers. The proposed work includes both analysis and software development in a joint computational effort with Cracow University of Technology, Boeing, and collaborators at the University of Texas at Austin.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在进一步开发不连续的Petrov Galerkin(DPG)有限元(FE)方法,该方法具有Jay Gopalakrishnan和Leszek Demkowicz在2009年引入的最佳测试功能。DPG方法论代表了挑战工程和科学过程的有限元素模拟中的突破性。拟议的研究方向是:2D和3D可压缩流问题的解决方案,使用相位场理论将延性到脆性相变的建模。该方法将对需要高准确性的困难应用程序的软件构建产生持久影响。该项目中针对的应用领域包括航空航天(跨气流)和高能电动机(绝缘故障),基于与波音和海军的合作建立。DPG方法最大程度地减少了对应于指定测试规范的双重规范中的残差。残差的计算需要在测试空间中的Riesz运算符反转。通过使用破裂的测试空间和可本质的测试规范,可以使用标准的盖尔金和“富集”空间来完成元素的反转。由于在元素级别上进行了RIESZ操作员的颠倒错误,该方法可以自动保证Hilbert环境中任何良好的线性问题的离散稳定性,从封闭的操作员的经典理论的意义上讲。该方法导致奇异扰动问题的稳定性统一,并且作为一种最小化方法,并未遭受任何抑制性不稳定性的影响。残差是计算而不是估计的,并为自动适应性提供了基础。 L2-Norms中的最佳性并不排除Gibbs现象,该项目旨在将DPG技术扩展到Banach空间。第一个焦点区域涉及一个困难的经典主题,即可压缩的Navier-Stokes方程,其应用程序可以围绕三维机翼模型流动及其简化模型,即完整的电势方程。第二种研究旨在使用相位场理论对聚合物的延性到脆性相变建模,并应用于理解聚合物绝缘层中的损伤和裂纹启动。在上述两个应用领域,解决方案都具有强大的边界或/和内部层。拟议的工作包括与克拉科夫技术大学,波音大学的联合计算工作中的分析和软件开发,以及德克萨斯大学奥斯汀分校的合作者。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估通过评估来支持的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sum factorization for fast integration of DPG matrices on prismatic elements
- DOI:10.1016/j.finel.2020.103385
- 发表时间:2020-05
- 期刊:
- 影响因子:3.1
- 作者:Jacob Badger;Stefan Henneking;L. Demkowicz
- 通讯作者:Jacob Badger;Stefan Henneking;L. Demkowicz
The DPG-Star method
DPG-Star 方法
- DOI:10.1016/j.camwa.2020.01.012
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Demkowicz, L;Gopalakrishnan, J;Keith, B
- 通讯作者:Keith, B
Alternative Enriched Test Spaces in the DPG Method for Singular Perturbation Problems
- DOI:10.1515/cmam-2018-0207
- 发表时间:2019-04
- 期刊:
- 影响因子:1.3
- 作者:J. Salazar;Jaime Mora;L. Demkowicz
- 通讯作者:J. Salazar;Jaime Mora;L. Demkowicz
Construction of DPG Fortinoperators revisited.Comp.andMath.Appl., 80:2261–2271, 2020
重新审视 DPG Fortinoperators 的构建。Comp.andMath.Appl., 80:2261–2271, 2020
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Demkowicz, L;Zanotti, P
- 通讯作者:Zanotti, P
An Lp-DPG Method with Application to 2D Convection-Diffusion Problems
应用于二维对流扩散问题的 Lp-DPG 方法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Li, J.;Demkowicz, L.
- 通讯作者:Demkowicz, L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leszek Demkowicz其他文献
A DPG method for planar div-curl problems
- DOI:
10.1016/j.camwa.2024.01.023 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Jiaqi Li;Leszek Demkowicz - 通讯作者:
Leszek Demkowicz
An anisotropic <em>hp</em>-adaptation framework for ultraweak discontinuous Petrov–Galerkin formulations
- DOI:
10.1016/j.camwa.2024.05.025 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Ankit Chakraborty;Stefan Henneking;Leszek Demkowicz - 通讯作者:
Leszek Demkowicz
Leszek Demkowicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leszek Demkowicz', 18)}}的其他基金
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Elements:Software A Scalable Open-Source hp-Adaptive FE Software for Complex Multiphysics Applications
元素:软件 适用于复杂多物理场应用的可扩展开源 hp 自适应有限元软件
- 批准号:
2103524 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions. Space-Time Formulations and Elements of Irregular Shapes
具有最佳测试函数的不连续 Petrov Galerkin (DPG) 方法。
- 批准号:
1418822 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
A Request for Support for Students to Attend the Eighth US National Congress on Computational Mechanics
请求支持学生参加第八届美国计算力学全国代表大会
- 批准号:
0508603 - 财政年份:2005
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Mathematical Sciences: Entropy-Controlled Adaptive Finite Element Simulations of Compressible Gas Flow
数学科学:可压缩气体流动的熵控制自适应有限元模拟
- 批准号:
9414480 - 财政年份:1995
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
- 批准号:12361076
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
非线性椭圆型方程多解问题的高精度算法
- 批准号:11871043
- 批准年份:2018
- 资助金额:50.0 万元
- 项目类别:面上项目
分数阶Laplace算子广义Neumann边值问题的谱方法研究
- 批准号:11801448
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
积分微分方程的hp时间步进法及其自适应算法
- 批准号:11771298
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
多介质可压缩流体的ALE间断Petrov-Galerkin方法研究
- 批准号:11761054
- 批准年份:2017
- 资助金额:36.5 万元
- 项目类别:地区科学基金项目
相似海外基金
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
- 批准号:
RGPIN-2019-04791 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions. Space-Time Formulations and Elements of Irregular Shapes
具有最佳测试函数的不连续 Petrov Galerkin (DPG) 方法。
- 批准号:
1418822 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant