Materials World Network: Quasi-Phase Matching in Non-Centrosymmetric Wide Band Gap Semiconductors.

材料世界网络:非中心对称宽带隙半导体中的准相位匹配。

基本信息

  • 批准号:
    1312582
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-01-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: With support from the Division of Materials Research, a collaboration between the Wide-Bandgaps group at North Carolina State University (NCSU) and the Quantum Optics group at the University of Ljubljana, Slovenia, has been established to explore the feasibility of using non-centrosymmetric wide bandgap semiconductors as nonlinear optical materials. In this work, AlGaN (aluminum gallium nitride) will serve as a model material for the investigation of the applicability of this semiconductor class as the high-quality quasi phase-matched structures for second harmonic generation (SHG). As a wide bandgap semiconductor, this will allow for SHG to shift the wavelength of available semiconductor lasers to the range of shorter wavelengths, where injection lasers are not available. In principle, it should allow for the frequency doubling of the output of a semiconductor laser with the shortest wavelength in the violet-blue region and produce a compact, coherent deep ultraviolet light source with wavelengths approaching 200 nm. This international collaboration seeks to demonstrate quasi-phase matched structures for SHG based on wide bandgap nitrides and to develop fundamental nonlinear optical concepts for efficient SHG in the UV spectrum that cannot be achieved in other systems. In order to realize this, two main challenges need to be met: (1) the demonstration of periodic lateral polarity control in AlGaN alloys, and (2) the development of the basic understanding of nonlinear optical characteristics of these structures. The group at NCSU addresses the first challenge, where their expertise in growth and control of polarity in III-nitrides has been demonstrated. The Quantum Optics group at the University of Ljubljana addresses the second challenge with their unique capabilities and expertise in harnessing non-linear optical properties of different materials. The periodic AlGaN structures are grown and fabricated using metalorganic chemical vapor deposition, with the choice of alloy composition and structure geometry based on the optical research by the group at Ljubljana. NON-TECHNICAL SUMMARY: Nonlinear optical devices based on the aluminum gallium nitride semiconductors can provide a broad-based vehicle for laser light generation in the deep ultraviolet region of the electromagnetic spectrum, which is not accessible by any other solid-state technology. This can find uses in health care, bio-defense and other commercial and defense applications. The use of light sources in the deep UV will lead to detection systems of different chemical and biological aerosols, providing for detection of a variety of pollutant agents among other effluents. In general, this research will lead to materials that will be used for applications that deal with the preservation and extension of natural resources by: (1) allowing for the efficient use and transmission of electrical energy, (2) availability of clean potable water through disinfection by the use of UV light emitting diodes, and (3) emissions and other effluents detection. In addition, this challenging project will provide the opportunity to establish a research collaboration and student exchange between North Carolina State University and the University of Ljubljana. This opportunity will also help expose the students and researchers to state of the art facilities within NCSU and the University of Ljubljana for realizing this research, while at the same time building an international network for establishing future careers.
技术摘要:在材料研究部的支持下,北卡罗来纳州立大学 (NCSU) 宽带隙小组和斯洛文尼亚卢布尔雅那大学量子光学小组之间建立了合作关系,以探索使用非中心对称宽带隙半导体作为非线性光学材料。在这项工作中,AlGaN(氮化铝镓)将作为模型材料,研究此类半导体作为二次谐波产生(SHG)的高质量准相位匹配结构的适用性。作为一种宽带隙半导体,这将使 SHG 将可用半导体激光器的波长转移到注入激光器不可用的较短波长范围。原则上,它应该允许将紫蓝色区域中最短波长的半导体激光器的输出倍频,并产生波长接近200 nm的紧凑、相干的深紫外光源。这项国际合作旨在展示基于宽带隙氮化物的二次谐波产生的准相位匹配结构,并开发在紫外光谱中实现高效二次谐波产生的基本非线性光学概念,这是其他系统无法实现的。为了实现这一点,需要解决两个主要挑战:(1)演示 AlGaN 合金中的周期性横向极性控制,以及(2)发展对这些结构的非线性光学特性的基本理解。北卡罗来纳州立大学的研究小组解决了第一个挑战,他们在 III 族氮化物生长和极性控制方面的专业知识已得到证明。卢布尔雅那大学的量子光学小组以其在利用不同材料的非线性光学特性方面的独特能力和专业知识解决了第二个挑战。周期性 AlGaN 结构采用金属有机化学气相沉积法生长和制造,并根据卢布尔雅那团队的光学研究选择合金成分和结构几何形状。非技术摘要:基于氮化铝镓半导体的非线性光学器件可以为电磁波谱深紫外区域的激光产生提供广泛的载体,这是任何其他固态技术都无法实现的。这可以用于医疗保健、生物防御以及其他商业和国防应用。深紫外光源的使用将产生不同化学和生物气溶胶的检测系统,从而可以检测其他废水中的各种污染物。总的来说,这项研究将产生可用于处理自然资源保护和扩展应用的材料:(1)允许有效使用和传输电能,(2)通过以下方式提供清洁饮用水:使用紫外线发光二极管进行消毒,以及 (3) 排放物和其他废水检测。此外,这个具有挑战性的项目将为北卡罗来纳州立大学和卢布尔雅那大学之间建立研究合作和学生交流提供机会。这一机会还将帮助学生和研究人员接触北卡罗来纳州立大学和卢布尔雅那大学最先进的设施,以实现这项研究,同时建立一个国际网络,以建立未来的职业生涯。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design Challenges for Mid-UV Laser Diodes
Point defect reduction in MOCVD (Al)GaN by chemical potential control and a comprehensive model of C incorporation in GaN
  • DOI:
    10.1063/1.5002682
  • 发表时间:
    2017-12-28
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Reddy, Pramod;Washiyama, Shun;Sitar, Zlatko
  • 通讯作者:
    Sitar, Zlatko
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramon Collazo其他文献

(チオフェン/フェニレン)コオリゴマーを用いた有機半導体レーザー共振器の作製と評価
使用(噻吩/亚苯基)低聚物的有机半导体激光谐振器的制作和评估
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中凌平;東城俊介;額賀俊成;富樫理恵;永島徹;木下亨;Baxter Moody;村上尚;Ramon Collazo;熊谷義直;纐纈明伯;Zlatko Sitar;佐々木史雄
  • 通讯作者:
    佐々木史雄
Defect selective etching of MOVPE grown AlN and HVPE grown bulk AlN substrates in a molten KOH/NaOH eutectic
在熔融 KOH/NaOH 共晶中对 MOVPE 生长的 AlN 和 HVPE 生长的块状 AlN 衬底进行缺陷选择性蚀刻
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mari Higuchi;Taro Mitsui;Toru Nagashima;Reo Yamamoto;Keita Konishi;Galia Pozina;Rafael Dalmau;Raoul Schlesser;Ramon Collazo;Bo Monemar;Zlatko Sitar;and Yoshinao Kumagai
  • 通讯作者:
    and Yoshinao Kumagai
Influence of ambient oxygen on Si incorporation during hydride vapor phase epitaxy of AlN at high temperature
环境氧气对AlN高温氢化物气相外延过程中Si掺入的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keita Konishi;Reo Yamamoto;Rie Togashi;Toru Nagashima;Rafael Dalmau;Raoul Schlesser;Hisashi Murakami;Ramon Collazo;Bo Monemar;Zlatko Sitar;and Yoshinao Kumagai
  • 通讯作者:
    and Yoshinao Kumagai
Gallium oxide related materials as novel wide-band-gap semiconductor
氧化镓相关材料作为新型宽带隙半导体
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toru Nagashima;Yuki Kubota;Toru Kinoshita;Yoshinao Kumagai;Jinqiao Xie;Ramon Collazo;Hisashi Murakami;Hiroshi Okamoto;Akinori Koukitu;Zlatko Sitar;Takayoshi Oshima
  • 通讯作者:
    Takayoshi Oshima
Development of bulk AlN substrates for deep-UV optoelectronic devices by HVPE method
HVPE法开发深紫外光电子器件用块状AlN衬底
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshinao Kumagai;Rie Togashi;Toru Nagashima;Toru Kinoshita;Reo Yamamoto;Rafael Dalmau;Raoul Schlesser;Hisashi Murakami;Ramon Collazo;Akinori Koukitu;Bo Monemar;and Zlatko Sitar
  • 通讯作者:
    and Zlatko Sitar

Ramon Collazo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramon Collazo', 18)}}的其他基金

Conference: International Workshop on Nitride Semiconductors 2024
会议:2024 年氮化物半导体国际研讨会
  • 批准号:
    2421101
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Advanced doping techniques for AlGaN-based power devices
用于 AlGaN 功率器件的先进掺杂技术
  • 批准号:
    1916800
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Engineering point defect formation in UWBG-based optoelectronic devices
职业:基于 UWBG 的光电器件中工程点缺陷的形成
  • 批准号:
    1653383
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
A pathway to controllable n-type doping in AlGaN alloys for high power devices
用于高功率器件的 AlGaN 合金中可控 n 型掺杂的途径
  • 批准号:
    1508854
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于真实世界数据的糖尿病共病网络演化和预测
  • 批准号:
    62302065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于开放世界物体识别的检索增强视觉网络
  • 批准号:
    62376134
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
小世界分层RF/FSO Mesh网络构建与优化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Lévy噪声激励和小世界网络结构下的神经系统的奇异态
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据驱动的世界集装箱海运网络演化机制与抗毁性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10664959
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10437604
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
  • 批准号:
    1312421
  • 财政年份:
    2013
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了