Enhanced moduli, Hodge theory, and quantization
增强模、Hodge 理论和量化
基本信息
- 批准号:1302242
- 负责人:
- 金额:$ 30.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a research in the field of algebraic geometry. The project fuses techniques from geometry and quantum field theory to unravel the hidden complexity of algebraic singularities, to extract new enumerative invariants of varieties, and to construct novel dualities in representation theory. Five problems will be studied. The first one aims to construct new algebraic invariants of moduli spaces and of symplectic singularities. The building and computation of these invariants requires a theoretical development of the formalism of shifted symplectic structures in non-commutative geometry. In the second project a new method is proposed for constructing motivic enumerative invariants by shifted quantization of the moduli of objects in differential graded categories of Calabi-Yau type. The third project analyzes the way in which non-commutative Hodge theory controls the deformations of Landau-Ginzburg models and proposes a very general unobstructedness theorem. The fourth project gives a strategy for reformulating and proving the classical limit Langlands duality as a purely topological duality for perverse sheaves. The last project will establish the functoriality of the ramified and the twisted non-abelian Hodge correspondences.The resolution of these questions will consolidate and demystify several existing quantization schemes in geometry, symplectic topology, and field theory. The project sets the stage for understanding the basic structure of algebraic varieties in a way suitable for pragmatic use in a broad spectrum of applications. Aside from the natural applications to algebraic topology, the work proposed will be immediately relevant to deep questions in category theory, geometric representation theory, the theory of integrable systems, string theory, gauge theory, quantum gravity and cosmology. The project outlines concrete cross-discipline applications to the physics of mirror symmetry, renormalization group flow, and the quantization of gauge theories. This project also aims to organize a concentrated effort on enhancing and building a new geometric arsenal of techniques applicable to the theory of algebraic cycles, symplectic topology, and high energy physics. This will be achieved by training a group of young researchers, and graduate students in mathematics and physics, and by a curriculum development of a course on derived symplectic geometry, and a course on non-commutative Hodge theory. Specific research opportunities on the interface of geometry and string theory for graduate students and postdocs are discussed. The proposed work will be disseminated through talks at multidisciplinary conferences, research seminars and publications in peer reviewed scientific journals.
这是代数几何领域的一项研究。该项目融合了几何学和量子场论的技术,以揭示代数奇点隐藏的复杂性,提取新的簇的枚举不变量,并在表示论中构建新颖的对偶性。将研究五个问题。第一个旨在构造模空间和辛奇点的新代数不变量。这些不变量的构建和计算需要非交换几何中移位辛结构的形式主义的理论发展。 在第二个项目中,提出了一种通过 Calabi-Yau 类型的微分分级类别中对象模的移位量化来构造动机枚举不变量的新方法。第三个项目分析了非交换Hodge理论控制Landau-Ginzburg模型变形的方式,并提出了一个非常普遍的无阻碍定理。 第四个项目给出了重新表述和证明经典极限朗兰兹对偶性作为反常滑轮的纯粹拓扑对偶性的策略。最后一个项目将建立分支和扭曲非交换霍奇对应的函子性。这些问题的解决将巩固和揭开几何、辛拓扑和场论中现有的几种量化方案的神秘面纱。该项目为理解代数簇的基本结构奠定了基础,以适合在广泛的应用中实际使用的方式。除了代数拓扑的自然应用之外,所提出的工作还将与范畴论、几何表示论、可积系统理论、弦论、规范论、量子引力和宇宙学中的深层问题直接相关。该项目概述了镜像对称物理、重整化群流和规范理论量子化的具体跨学科应用。该项目还旨在组织集中力量,增强和建立适用于代数循环、辛拓扑和高能物理理论的新几何技术库。这将通过培训一批数学和物理学方面的年轻研究人员和研究生,以及开发派生辛几何课程和非交换霍奇理论课程来实现。讨论了研究生和博士后关于几何和弦理论接口的具体研究机会。拟议的工作将通过多学科会议的演讲、研究研讨会和同行评审的科学期刊上的出版物进行传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Pantev其他文献
Cluster decomposition, T-duality, and gerby CFTs
簇分解、T-对偶性和 Gerby CFT
- DOI:
10.4310/atmp.2007.v11.n5.a2 - 发表时间:
2006-06-05 - 期刊:
- 影响因子:1.5
- 作者:
S. Hellerman;André Henriques;Tony Pantev;Eric Sharpe;Matthew Ando - 通讯作者:
Matthew Ando
Schematic homotopy types and non-abelian Hodge theory
图式同伦类型和非阿贝尔霍奇理论
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:1.8
- 作者:
L. Katzarkov;Tony Pantev;Bertrand Toën - 通讯作者:
Bertrand Toën
Introductory topics in derived algebraic geometry
派生代数几何的入门主题
- DOI:
- 发表时间:
2021-10 - 期刊:
- 影响因子:0
- 作者:
Tony Pantev;Gabriele Vezzosi - 通讯作者:
Gabriele Vezzosi
Chern-Simons theory, decomposition, and the A model
Chern-Simons 理论、分解和 A 模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tony Pantev;Eric Sharpe;Xingyang Yu - 通讯作者:
Xingyang Yu
Tony Pantev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Pantev', 18)}}的其他基金
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
- 批准号:
2200914 - 财政年份:2022
- 资助金额:
$ 30.56万 - 项目类别:
Continuing Grant
Poisson Geometry, Quantum Moduli, and Geometric Dualities
泊松几何、量子模和几何对偶
- 批准号:
1901876 - 财政年份:2019
- 资助金额:
$ 30.56万 - 项目类别:
Continuing Grant
Quantum Invariants, Enhanced Moduli, and Integrable Systems
量子不变量、增强模和可积系统
- 批准号:
1601438 - 财政年份:2016
- 资助金额:
$ 30.56万 - 项目类别:
Standard Grant
New Hodge theoretic invariants in geometry and physics
几何和物理学中的新霍奇理论不变量
- 批准号:
1001693 - 财政年份:2010
- 资助金额:
$ 30.56万 - 项目类别:
Standard Grant
University of Pennsylvania RTG in Mathematical Physics
宾夕法尼亚大学 RTG 数学物理专业
- 批准号:
0636606 - 财政年份:2007
- 资助金额:
$ 30.56万 - 项目类别:
Continuing Grant
Hodge Theory, Dualities and Non-Commutative Geometry
霍奇理论、对偶性和非交换几何
- 批准号:
0403884 - 财政年份:2004
- 资助金额:
$ 30.56万 - 项目类别:
Continuing Grant
Geometry of Non-abelian Hodge Structures
非交换霍奇结构的几何
- 批准号:
0099715 - 财政年份:2001
- 资助金额:
$ 30.56万 - 项目类别:
Continuing Grant
Geometric Applications of Non-Abelian Hodge Theory
非阿贝尔霍奇理论的几何应用
- 批准号:
9800790 - 财政年份:1998
- 资助金额:
$ 30.56万 - 项目类别:
Standard Grant
相似国自然基金
面向高速SerDes的抗辐射时间交织模数转换器关键技术研究
- 批准号:62304258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向新型混合存储架构的大规模数据放置策略研究
- 批准号:62372450
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放场景类脑具身智能的大规模数字神经形态计算研究
- 批准号:62376185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大模数齿轮滚削性能建模与优化方法研究
- 批准号:52305532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模数据驱动与领域知识引导的煤岩显微组分自动识别方法研究
- 批准号:62373360
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: Hodge Theory, Moduli, and Representation Theory
FRG:协作研究:霍奇理论、模数和表示理论
- 批准号:
1361159 - 财政年份:2014
- 资助金额:
$ 30.56万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Hodge Theory, Moduli and Representation theory
FRG:合作研究:霍奇理论、模数和表示理论
- 批准号:
1361120 - 财政年份:2014
- 资助金额:
$ 30.56万 - 项目类别:
Continuing Grant