GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
基本信息
- 批准号:1309202
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-15 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****This NSF-GOALI project brings together leading researchers in nanomagnetism from New York University and IBM with the aim of furthering the understanding of the physics of spin-transfer and applications of spin-transfer to high performance devices. Spin-transfer is a mechanism by which a spin-polarized current can reverse the magnetic orientation of a nanomagnet and induce magnetic excitations such as spin-waves. This is an exciting development that will very likely enable dramatic improvements in magnetic information processing and storage. This is because spin-transfer offers a mechanism for rapidly reversing the magnetization of nanomagnets with large magnetic anisotropy that would otherwise require huge local magnetic fields -an achievement critical to increasing magnetic information storage density. However, as nanomagnets are reduced in size their magnetic moments become more susceptible to reversal due to random forces associated with thermal and electrical noise. An understanding of the effects of noise on spin-transfer driven magnetization dynamics is thus critical. This project will advance understanding of spin-transfer physics through experimental studies of individual nanomagnets excited by spin-currents, including a new research direction that will use spin-currents generated through excitation of ferromagnetic insulators. These experimental studies will be conducted in concert and guided by a theoretical analysis of noise-induced transitions in the presence of spin-transfer torques. The theoretical analysis will focus on new phenomena generated by the interaction of a nongradient deterministic dynamics with random forces. Graduate and undergraduate students involved in this collaboration will gain by interactions between academia and industry.****Non-Technical Abstract****This project brings together leading researchers from New York University and IBM with the aim of furthering the understanding and application of nanometer scale magnetic devices and materials. Magnetic nanostructures are widely used in technology with the most advanced applications found in information processing. This is a huge industry in the United States that is growing rapidly, with the ever-increasing worldwide demands for data processing and storage. It has been discovered that in miniature magnetic devices a direct electrical current can switch the direction of magnetization by a mechanism known as spin-transfer. This is an exciting development that may enable dramatic improvements in magnetic information processing and storage. There are important and fundamental questions about the nature of the interaction between the current and magnetization that this project will address through studies of individual magnetic nanostructures excited by spin-currents using unique high frequency measurement techniques. This research will be integrated with the training of young scientists in this forefront area of magnetism research. Participating graduate and undergraduate students will gain by interactions between academia and industry and through exchanges between NYU and IBM. Their education will be enriched through exposure to a variety of perspectives, expertise and techniques present in an industrial setting. High school students will also participate in this research.
****技术摘要****这个NSF-GOALI项目将纽约大学和IBM的纳米磁性研究人员汇集在一起,目的是进一步了解自旋转移的物理学以及Spin-Transfer对高性能设备的应用。自旋转移是一种机制,通过该机制,自旋偏振电流可以逆转纳米磁体的磁取向并诱导诸如自旋波之类的磁激发。这是一个令人兴奋的发展,很可能会在磁性信息处理和存储方面进行巨大改进。这是因为自旋转移提供了一种机制,可快速逆转具有大磁各向异性的纳米磁体的磁化,否则将需要巨大的局部磁场 - 这对于增加磁性信息存储密度至关重要。但是,由于与热噪声相关的随机力,随着纳米磁体的尺寸减小,它们的磁矩变得更容易逆转。因此,了解噪声对自旋转移驱动的磁化动力学的影响至关重要。该项目将通过对自旋电流激发的单个纳米磁体的实验研究来提高对自旋转移物理的了解,包括新的研究方向,该方向将使用通过激发铁电磁绝缘子产生的自旋电流。这些实验研究将共同进行,并在存在自旋转移扭矩的情况下对噪声诱导的过渡的理论分析进行指导。理论分析将集中于非质量确定性动力学与随机力的相互作用所产生的新现象。参与这项合作的研究生和本科生将通过学术界与行业之间的互动来获得。磁性纳米结构被广泛用于技术处理中最先进的应用程序。这是美国一个巨大的行业,正在迅速发展,全球对数据处理和存储的需求不断增加。已经发现,在微型磁性设备中,直流电流可以通过称为自旋转移的机理切换磁化方向。这是一个令人兴奋的发展,可以在磁性信息处理和存储方面进行巨大改进。关于电流和磁化之间相互作用的性质,该项目将通过对单个磁性纳米结构的研究来解决通过独特的高频测量技术激发的单个磁性纳米结构来解决的重要和基本问题。这项研究将与在磁性研究的最前沿的年轻科学家的培训相结合。参与的毕业生和本科生将通过学术界与行业之间的互动以及纽约大学和IBM之间的交流而获得收获。他们的教育将通过接触工业环境中的各种观点,专业知识和技术来丰富。高中生还将参加这项研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Kent其他文献
Poster: AML-212: Treatment Free Remission (TFR) After Ceasing Venetoclax-Based Therapy in Responding Patients with Acute Myeloid Leukemia
- DOI:
10.1016/s2152-2650(21)01339-2 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Chong Chyn Chua;Daneille Hammond;Andrew Kent;Ing Soo Tiong;Doen Ming Ong;Konopleva Marina;Daniel A. Pollyea;Courtney D. DiNardo;Andrew H. Wei - 通讯作者:
Andrew H. Wei
Comparison of Myeloablative Conditioning with a Total Body Irradiation-Based Regimen Versus a Chemotherapy-Based Regimen in Adult Patients Undergoing Umbilical Cord Blood Stem Cell Transplant for Ph-Negative Acute Lymphoblastic Leukemia
- DOI:
10.1182/blood-2024-200993 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Jason S. Gilbert;Andrew Kent;Jonathan Gutman;Maria L Amaya;Christine M. McMahon;Daniel A Pollyea;Marc Schwartz - 通讯作者:
Marc Schwartz
Demonstration of Laparoscopic Resection of Uterine Sacculation (Niche) With Uterine Reconstruction
- DOI:
10.1016/j.jmig.2013.10.013 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:
- 作者:
Andrew Kent;Fevzi Shakir;Haider Jan - 通讯作者:
Haider Jan
Treatment-Related and De Novo Ccus Have Similar Molecular Features and Risk of Progression to Myeloid Malignancies
- DOI:
10.1182/blood-2024-201062 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Jennifer Santos;Diana Abbott;Grace Bosma;Andrew Kent;Marc Schwartz;Christine M. McMahon;Jonathan Gutman;Daniel A Pollyea;Maria L Amaya - 通讯作者:
Maria L Amaya
Technical Video: Bilateral Tubal Adhesiolysis With Cuff Salpingostomy
- DOI:
10.1016/j.jmig.2015.09.019 - 发表时间:
2016-02-01 - 期刊:
- 影响因子:
- 作者:
Fevzi Shakir;Andrew Kent - 通讯作者:
Andrew Kent
Andrew Kent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Kent', 18)}}的其他基金
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
- 批准号:
2246358 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
GOALI: Spin-Orbit Torques From Magnetically Ordered Materials and Their Applications
GOALI:磁有序材料的自旋轨道扭矩及其应用
- 批准号:
2105114 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
GOALI: Spin-Transfer in Magnetic Nanostructures
目标:磁性纳米结构中的自旋转移
- 批准号:
1610416 - 财政年份:2016
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
MRI: Acquisition of a Multichamber Deposition and Surface Analysis System for Quantum Materials and Device Research
MRI:获取用于量子材料和器件研究的多室沉积和表面分析系统
- 批准号:
1531664 - 财政年份:2015
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
- 批准号:
1006575 - 财政年份:2010
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
GOALI: Spin Transfer in Magnetic Nanostructures
GOALI:磁性纳米结构中的自旋转移
- 批准号:
0706322 - 财政年份:2007
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
FRG: NIRT: Quantum Spin Dynamics in Molecular Nanomagnets
FRG:NIRT:分子纳米磁体中的量子自旋动力学
- 批准号:
0506946 - 财政年份:2005
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Nanoscale Spin Transfer Devices and Materials
纳米级自旋转移器件和材料
- 批准号:
0405620 - 财政年份:2004
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
Acquisition of a High Frequency Measurement System for Magnetic Nanostructure Research and Student Training
采购用于磁性纳米结构研究和学生培训的高频测量系统
- 批准号:
0315609 - 财政年份:2003
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Acquisition of a Vector High Field Magnet System for Magnetic Nanostructure Research and Student Training
获取用于磁性纳米结构研究和学生培训的矢量高场磁体系统
- 批准号:
0114142 - 财政年份:2001
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
相似国自然基金
RuO2基反铁磁隧道结中的自旋转移力矩和隧道磁阻的理论研究
- 批准号:12274411
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
自旋转移矩磁随机存储器的单粒子效应和抗辐射加固技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RuO2基反铁磁隧道结中的自旋转移力矩和隧道磁阻的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
自旋转移矩磁随机存储器的单粒子效应和抗辐射加固技术研究
- 批准号:62204018
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing the molecular mechanisms that regulate key steps in the GPCR-sensory response pathway responsible for vision in dim light
探索调节负责弱光视觉的 GPCR 感觉反应通路关键步骤的分子机制
- 批准号:
10635707 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Emergent Technology for Studying the Structure/Function Relationship of Enzymes Using Electron Paramagnetic Resonance
利用电子顺磁共振研究酶结构/功能关系的新兴技术
- 批准号:
10630488 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Spin-Exchange and Energy Transfer at Hybrid Molecular/Lanthanide Nanoparticle Interfaces to Control Triplet Excitons
混合分子/稀土纳米颗粒界面的自旋交换和能量转移控制三重态激子
- 批准号:
EP/Y015584/1 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
Phosphorylation as a site-specific regulatory mechanism of the liquid-liquid phase separation of TDP-43 low complexity domain.
磷酸化作为 TDP-43 低复杂性结构域液-液相分离的位点特异性调节机制。
- 批准号:
10620157 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别:
Phosphorylation as a site-specific regulatory mechanism of the liquid-liquid phase separation of TDP-43 low complexity domain.
磷酸化作为 TDP-43 低复杂性结构域液-液相分离的位点特异性调节机制。
- 批准号:
10401259 - 财政年份:2021
- 资助金额:
$ 47.5万 - 项目类别: