Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data

合作研究:高通量生物医学数据综合分析的统计方法

基本信息

  • 批准号:
    1264033
  • 负责人:
  • 金额:
    $ 37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-10-31
  • 项目状态:
    已结题

项目摘要

Technological advances have led to a rapid proliferation of high-throughput "omics" data in medicine that hold the key to clinically effective personalized medicine. To realize this goal, statistical and computational tools to mine this data and discover biomarkers, drug targets, disrupted disease networks, and disease sub-types are urgently needed. There are, however, two primary factors which make the development of such statistical tools challenging. First, many high-throughput genomic technologies produce varied heterogeneous data, which include continuous data (microarrays, methylation arrays), count data (RNA-sequencing), and binary/categorical data (SNPs, CNV). These varied data sets do not always satisfy typical distributional assumptions imposed by standard high-dimensional statistical models. Second, in order for scientists to leverage all of their data and understand the complete molecular basis of disease, these varied omics data sets need to be combined into a single multivariate statistical model. This proposal seeks to address these two issues with a new statistical framework for integrated analysis of multiple sets of high-dimensional data measured on the same group of subjects. The key statistical approach uses the theory of exponential family distributions to generalize two foundational high-dimensional statistical frameworks, principal components analysis (PCA) and graphical models, so as to jointly analyze transcriptional, epi-genomics and functional genomics data. This research will be applied to high-throughput cancer genomics data and lead to new methods to (a) discover molecular cancer sub-types along with their genomic signatures and (b) build a holistic network model of disease. By leveraging information across all the different types available of genomic biomarkers, the proposed methods will have the potential to make scientific discoveries critical for personalized medicine. The proposed work will also be broadly applicable to integrating multiple sets of "omics" data, including genomics, proteomics, metabolomics, and imaging. Beyond medicine, the theoretical framework and statistical methods will make significant advances in the theory of exponential families, statistical learning, and the emerging field of integrative analysis as well as have broad applicability in other disciplines such as engineering and security. All results will be disseminated through publications, conferences, and open-source software; this research will also provide training and educational opportunities for doctoral and postdoctoral scholars.
技术进步导致医学中高通量“组学”数据的迅速扩散,这些数据是临床有效的个性化医疗的关键。为了实现这一目标,迫切需要统计和计算工具来挖掘这些数据并发现生物标志物、药物靶点、破坏的疾病网络和疾病亚型。然而,有两个主要因素使得此类统计工具的开发具有挑战性。首先,许多高通量基因组技术产生各种异质数据,包括连续数据(微阵列、甲基化阵列)、计数数据(RNA测序)和二进制/分类数据(SNP、CNV)。这些不同的数据集并不总是满足标准高维统计模型所施加的典型分布假设。其次,为了让科学家利用所有数据并了解疾病的完整分子基础,需要将这些不同的组学数据集组合成一个多元统计模型。 该提案旨在通过一个新的统计框架来解决这两个问题,该框架用于对同一组受试者测量的多组高维数据进行综合分析。关键的统计方法利用指数族分布理论概括了主成分分析(PCA)和图模型这两个基础高维统计框架,从而联合分析转录、表观基因组学和功能基因组学数据。 这项研究将应用于高通量癌症基因组学数据,并带来新方法:(a) 发现分子癌症亚型及其基因组特征;(b) 建立疾病的整体网络模型。 通过利用所有不同类型的基因组生物标志物的信息,所提出的方法将有可能使科学发现对个性化医疗至关重要。 拟议的工作还将广泛适用于整合多组“组学”数据,包括基因组学、蛋白质组学、代谢组学和成像。 除了医学之外,理论框架和统计方法还将在指数族理论、统计学习和新兴的综合分析领域取得重大进展,并在工程和安全等其他学科中具有广泛的适用性。 所有结果将通过出版物、会议和开源软件传播;这项研究还将为博士和博士后学者提供培训和教育机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pradeep Ravikumar其他文献

Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
对抗性鲁棒高斯分类的清晰统计保证
  • DOI:
  • 发表时间:
    2020-06-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Dan;Yuting Wei;Pradeep Ravikumar
  • 通讯作者:
    Pradeep Ravikumar
Optimizing NOTEARS Objectives via Topological Swaps
通过拓扑交换优化 NOTEARS 目标
Class-Weighted Classification: Trade-offs and Robust Approaches
类别加权分类:权衡和稳健方法
Global Optimality in Bivariate Gradient-based DAG Learning
基于双变量梯度的 DAG 学习中的全局最优性
  • DOI:
    10.48550/arxiv.2306.17378
  • 发表时间:
    2023-06-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chang Deng;Kevin Bello;Bryon Aragam;Pradeep Ravikumar
  • 通讯作者:
    Pradeep Ravikumar
Predicting bacterial growth conditions from bacterial physiology
从细菌生理学预测细菌生长条件
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Sridhara;A. Meyer;P. Rai;Jeffrey E. Barrick;Pradeep Ravikumar;D. Segrè;C. Wilke
  • 通讯作者:
    C. Wilke

Pradeep Ravikumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pradeep Ravikumar', 18)}}的其他基金

RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
  • 批准号:
    2211907
  • 财政年份:
    2022
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data
协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架
  • 批准号:
    1955532
  • 财政年份:
    2020
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
RI: Small: Non-parametric Machine Learning in the Age of Deep and High-Dimensional Models
RI:小:深度和高维模型时代的非参数机器学习
  • 批准号:
    1909816
  • 财政年份:
    2019
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
  • 批准号:
    1934584
  • 财政年份:
    2019
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
  • 批准号:
    1661802
  • 财政年份:
    2016
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
  • 批准号:
    1661755
  • 财政年份:
    2016
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1664720
  • 财政年份:
    2016
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
  • 批准号:
    1447574
  • 财政年份:
    2014
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Statistical ranking theory without a canonical loss
RI:小:协作研究:没有典型损失的统计排名理论
  • 批准号:
    1320894
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
  • 批准号:
    1149803
  • 财政年份:
    2012
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant

相似国自然基金

潜在威胁小行星热物理特性统计特征研究
  • 批准号:
    12303066
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄河流域城市大气污染和生态韧性时空演变及空间统计关系研究
  • 批准号:
    12361108
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
复发事件纵向数据的统计分析方法及应用研究
  • 批准号:
    82373679
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319593
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical mechanics of dense suspensions - dynamical correlations and scaling theory
合作研究:稠密悬浮液的统计力学 - 动力学相关性和标度理论
  • 批准号:
    2228681
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了