RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
基本信息
- 批准号:2211907
- 负责人:
- 金额:$ 112.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Supervised learning of modern machine learning models requires very large high-quality labeled datasets. Labeling data requires very expensive human annotations, which is often too expensive for under-resourced end-users of machine learning. Unsupervised learning of machine learning models from unlabeled data has the promise to vastly increase the accessibility and inclusivity of modern machine learning. An emerging paradigm for such unsupervised learning is self-supervised learning (SSL), wherein a machine learning model is trained on tasks for which labels can be automatically generated. This approach is at the core of high-performing language and image machine learning models like BERT and DALL-E. However, despite its promise on many benchmarks across diverse domains, a lot of current methodology for developing SSL methods is opaque and heuristic, and evaluation relies on ad-hoc choices of performance metrics. The goal of this project is to build scientific and mathematical foundations of SSL, and consequently also improve its practice. In some of the earliest work in this area, SSL was used to speed up tasks involving the learning of probabilistic models. Progressively, via a series of approximations for scalability, the outputs of SSL could no longer be rigorously tied to probabilistic model parameters, and the goal shifted to learning features that are "useful" for downstream tasks, that is representation learning. "Useful" however can often be mathematically difficult to pin down, so it is frequently not clear (even empirically, much less theoretically) what these methods learn about the data. At present, designing a well-performing SSL method entails trying many combinations of tasks and model architectures, until a particular one gives good results on the downstream tasks. This has two downsides: (i) it requires a substantial amount of trial-and-error; (ii) on a scientific level, it doesn't yield any understanding of what makes a particular task/architecture suitable, and what the features learned capture about the data distribution. This project will repair the severed tie between probabilistic models and feature learning via self-supervised models by analyzing the aspects of a deep generative model that can be recovered via self-supervised learning. Moreover, through this lens, we propose to understand the relative advantages---both statistical and algorithmic---of self-supervised learning methods over other methods for learning probabilistic models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代机器学习模型的监督学习需要非常大的高质量标记数据集。标记数据需要非常昂贵的人工注释,这对于资源不足的机器学习最终用户来说通常过于昂贵。从未标记数据中对机器学习模型进行无监督学习有望大大提高现代机器学习的可访问性和包容性。这种无监督学习的新兴范例是自监督学习(SSL),其中机器学习模型针对可以自动生成标签的任务进行训练。这种方法是 BERT 和 DALL-E 等高性能语言和图像机器学习模型的核心。然而,尽管它在跨不同领域的许多基准上做出了承诺,但当前开发 SSL 方法的许多方法都是不透明和启发式的,并且评估依赖于性能指标的临时选择。该项目的目标是建立 SSL 的科学和数学基础,从而改进其实践。在该领域的一些最早的工作中,SSL 用于加速涉及概率模型学习的任务。逐渐地,通过一系列可扩展性的近似,SSL 的输出不再严格依赖于概率模型参数,目标转移到学习对下游任务“有用”的特征,即表示学习。然而,“有用”通常在数学上很难确定,因此通常不清楚(即使是经验上的,更不用说理论上的)这些方法从数据中学到了什么。目前,设计一种性能良好的 SSL 方法需要尝试多种任务和模型架构的组合,直到某一特定组合在下游任务上给出良好的结果。这有两个缺点:(i)需要大量的试错; (ii) 在科学层面上,它无法理解什么使特定任务/架构适合,以及学到的特征捕获了数据分布的哪些内容。该项目将通过分析可通过自监督学习恢复的深度生成模型的各个方面,通过自监督模型修复概率模型和特征学习之间断绝的联系。此外,通过这个视角,我们建议了解自监督学习方法相对于其他概率模型学习方法的相对优势(统计和算法)。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concept Gradient: Concept-based Interpretation Without Linear Assumption
概念梯度:基于概念的解释,无需线性假设
- DOI:10.48550/arxiv.2208.14966
- 发表时间:2022-08-31
- 期刊:
- 影响因子:0
- 作者:Andrew Bai;Chih;Pradeep Ravikumar;Neil Y. C. Lin;Cho
- 通讯作者:Cho
Masked Prediction: A Parameter Identifiability View
屏蔽预测:参数可识别性视图
- DOI:
- 发表时间:2024-09-14
- 期刊:
- 影响因子:0
- 作者:Bingbin Liu;Daniel J. Hsu;Pradeep Ravikumar;Andrej Risteski
- 通讯作者:Andrej Risteski
Identifiability of deep generative models without auxiliary information
无需辅助信息的深度生成模型的可识别性
- DOI:
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Kivva, Bohdan;Rajendran, Goutham;Ravikumar, Pradeep;Aragam, Bryon
- 通讯作者:Aragam, Bryon
Pitfalls of Gaussians as a noise distribution in NCE
NCE 中高斯分布作为噪声分布的陷阱
- DOI:
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Lee, Holden;Pabbaraju, Chirag;Sevekari, Anish Prasad;Risteski, Andrej
- 通讯作者:Risteski, Andrej
LABEL PROPAGATION WITH WEAK SUPERVISION
弱监督下的标签传播
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Pukdee, Rattana;Sam, Dylan;Balcan, Maria;Ravikumar, Pradeep
- 通讯作者:Ravikumar, Pradeep
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pradeep Ravikumar其他文献
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
对抗性鲁棒高斯分类的清晰统计保证
- DOI:
- 发表时间:
2020-06-29 - 期刊:
- 影响因子:0
- 作者:
Chen Dan;Yuting Wei;Pradeep Ravikumar - 通讯作者:
Pradeep Ravikumar
M L ] 2 0 N ov 2 01 8 Revisiting Adversarial Risk
M L ] 2 0 Nov 2 01 8 重新审视对抗性风险
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
A. Suggala;Adarsh Prasad;Vaishnavh Nagarajan;Pradeep Ravikumar - 通讯作者:
Pradeep Ravikumar
Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of boldmathell_1-regularized MLE
高斯图模型中的模型选择:boldmathell_1-正则化 MLE 的高维一致性
- DOI:
10.1016/j.jmva.2013.03.001 - 发表时间:
2008-12-08 - 期刊:
- 影响因子:0
- 作者:
Garvesh Raskutti;Bin Yu;M. Wainwright;Pradeep Ravikumar - 通讯作者:
Pradeep Ravikumar
Contrastive learning of strong-mixing continuous-time stochastic processes
强混合连续时间随机过程的对比学习
- DOI:
- 发表时间:
2021-03-03 - 期刊:
- 影响因子:0
- 作者:
Bingbin Liu;Pradeep Ravikumar;Andrej Risteski - 通讯作者:
Andrej Risteski
Perturbation based Large Margin Approach for Ranking
基于扰动的大裕度排名方法
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Eunho Yang;Ambuj Tewari;Pradeep Ravikumar - 通讯作者:
Pradeep Ravikumar
Pradeep Ravikumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pradeep Ravikumar', 18)}}的其他基金
Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data
协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架
- 批准号:
1955532 - 财政年份:2020
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
RI: Small: Non-parametric Machine Learning in the Age of Deep and High-Dimensional Models
RI:小:深度和高维模型时代的非参数机器学习
- 批准号:
1909816 - 财政年份:2019
- 资助金额:
$ 112.79万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Based Machine Learning for Sub-Seasonal Climate Forecasting
合作研究:基于物理的机器学习用于次季节气候预测
- 批准号:
1934584 - 财政年份:2019
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
- 批准号:
1661802 - 财政年份:2016
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
- 批准号:
1661755 - 财政年份:2016
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1664720 - 财政年份:2016
- 资助金额:
$ 112.79万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: High-Dimensional Statistical Machine Learning for Spatio-Temporal Climate Data
BIGDATA:F:DKA:协作研究:时空气候数据的高维统计机器学习
- 批准号:
1447574 - 财政年份:2014
- 资助金额:
$ 112.79万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methods for Integrated Analysis of High-Throughput Biomedical Data
合作研究:高通量生物医学数据综合分析的统计方法
- 批准号:
1264033 - 财政年份:2013
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Statistical ranking theory without a canonical loss
RI:小:协作研究:没有典型损失的统计排名理论
- 批准号:
1320894 - 财政年份:2013
- 资助金额:
$ 112.79万 - 项目类别:
Standard Grant
CAREER: A New Neat Framework for Statistical Machine Learning
职业:统计机器学习的新简洁框架
- 批准号:
1149803 - 财政年份:2012
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
相似国自然基金
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403074 - 财政年份:2024
- 资助金额:
$ 112.79万 - 项目类别:
Standard Grant
Collaborative Research: CIF:Medium:Theoretical Foundations of Compositional Learning in Transformer Models
合作研究:CIF:Medium:Transformer 模型中组合学习的理论基础
- 批准号:
2403075 - 财政年份:2024
- 资助金额:
$ 112.79万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402852 - 财政年份:2024
- 资助金额:
$ 112.79万 - 项目类别:
Continuing Grant
RI: Medium: Foundations of Recourse Verification in Machine Learning
RI:媒介:机器学习资源验证的基础
- 批准号:
2313105 - 财政年份:2023
- 资助金额:
$ 112.79万 - 项目类别:
Standard Grant