Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
基本信息
- 批准号:1264104
- 负责人:
- 金额:$ 17.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTCollaborative Proposals #1264104 - Susan B. Sinnott #1263951 - Michael J. Janik Scientific Merit: As traditional fossil fuel sources of energy are depleted, new energy conversion and chemical energy storage approaches will be needed to supply energy for both portable and stationary applications. Fuel cells offer efficient conversion of chemical to electrical energy. Electrolysis applications reverse this process and store electricity from renewable sources, such as the wind or sun, in chemical form for later use. The efficiency of converting energy between chemical and electrical forms is dictated by atomistic processes that occur at device electrodes. These processes are difficult to probe with conventional experiments. The characterization of these processes is enabled using atomic and quantum level computational methods. There are two major limitations in current modeling approaches for evaluating reactivity of electrode surfaces: the inability to estimate rates for electron transfer reactions and the lack of atomistic force fields that can describe chemical reactions and charge transfer, yet retain the thickness required to capture relevant interfacial phenomena. Professors Michael Janik and Janna Maranas of Pennsylvania State University and Susan Sinnott of the University of Florida have received an award from the National Science Foundation Catalysis & Biocatalysis Program to tackle these limitations. The first limitation will be addressed through the development of a transferable method for electron transfer rate constants using methods based on quantum mechanics. This method will be applied and validated versus experimental data for the carbon dioxide reduction reaction (of relevance for converting electrical energy and waste carbon dioxide into a chemical fuel) and the oxygen reduction reaction (of relevance in fuel cells). The method will be further applied, in collaboration with experiment, to evaluate the reaction mechanism in the electrocatalytic synthesis of high value chemicals from bio-derived feedstock. The second limitation will be addressed through a reactive molecular force field with variable partial charges for both electrode and solvent. Charge optimized many-body reactive potentials will be developed for copper and platinum electrodes in contact with alkali hydroxide electrolytes. Molecular dynamics calculations will evaluate electrochemical interface, including solvent structure and charge distribution. These multiscale atomistic modeling tools enable definitive identification of electrochemical reaction mechanisms. They will be applied to three specific electrocatalytic applications to evaluate a series of reaction specific hypotheses. Broader Impacts: The broader impacts of this work secure a clean energy future in which renewable energy and chemical energy storage work together to provide an efficient, practical approach to sustainable energy. This project develops a joint quantum chemistry and reactive molecular dynamics framework to model electrochemical interfaces, facilitating rational design of materials for improved batteries, fuel cells, and grid-level electrochemical energy storage. With this in mind, educational activities are designed to motivate students to pursue careers in energy related fields. Graduate students will benefit from an inter-disciplinary research project at two universities, and become skilled in multiple computer simulation methods. Portions of the proposed work will be packaged as undergraduate projects at both Penn State and the University of Florida, including underrepresented groups through the Penn State Minority Undergraduate Research Experience and Women in Science and Engineering Research programs. Research opportunities will be provided to high school students through the U. of Florida. The developed computer simulation methods will be broadly distributed to the computational community, allowing others to apply the techniques developed to electrochemical problems outside the scope of this proposal.
摘要协作提案 #1264104 - Susan B. Sinnott #1263951 - Michael J. Janik 科学优点:随着传统化石燃料能源的枯竭,将需要新的能源转换和化学能源存储方法来为便携式和固定应用提供能源。 燃料电池可有效地将化学能转化为电能。 电解应用逆转了这一过程,并以化学形式存储来自可再生能源(例如风或太阳)的电力以供以后使用。 化学形式和电形式之间能量转换的效率由设备电极处发生的原子过程决定。这些过程很难用传统实验来探究。使用原子和量子级计算方法可以表征这些过程。当前用于评估电极表面反应性的建模方法存在两个主要限制:无法估计电子转移反应的速率,以及缺乏可以描述化学反应和电荷转移但保留捕获相关界面所需的厚度的原子力场。现象。宾夕法尼亚州立大学的迈克尔·贾尼克 (Michael Janik) 和詹娜·马拉纳斯 (Janna Maranas) 教授以及佛罗里达大学的苏珊·辛诺特 (Susan Sinnott) 获得了美国国家科学基金会催化和生物催化计划的奖项,以解决这些局限性。第一个限制将通过使用基于量子力学的方法开发电子转移速率常数的可转移方法来解决。 该方法将根据二氧化碳还原反应(与将电能和废弃二氧化碳转化为化学燃料相关)和氧还原反应(与燃料电池相关)的实验数据进行应用和验证。 该方法将进一步应用,与实验合作,评估生物源原料电催化合成高价值化学品的反应机理。 第二个限制将通过电极和溶剂具有可变部分电荷的反应分子力场来解决。 将为与碱金属氢氧化物电解质接触的铜和铂电极开发电荷优化的多体反应电势。 分子动力学计算将评估电化学界面,包括溶剂结构和电荷分布。 这些多尺度原子建模工具能够明确识别电化学反应机制。它们将应用于三种特定的电催化应用,以评估一系列反应特定假设。更广泛的影响:这项工作的更广泛影响确保了清洁能源的未来,其中可再生能源和化学储能共同为可持续能源提供高效、实用的方法。该项目开发了一个联合量子化学和反应分子动力学框架来模拟电化学界面,促进材料的合理设计,以改进电池、燃料电池和电网级电化学储能。 考虑到这一点,教育活动旨在激励学生从事能源相关领域的职业。 研究生将受益于两所大学的跨学科研究项目,并熟练掌握多种计算机模拟方法。 拟议工作的部分内容将打包为宾夕法尼亚州立大学和佛罗里达大学的本科项目,包括通过宾夕法尼亚州立大学少数族裔本科生研究经验和科学与工程研究项目中的女性来代表性不足的群体。 佛罗里达大学将向高中生提供研究机会。 开发的计算机模拟方法将广泛分布到计算社区,允许其他人将开发的技术应用于本提案范围之外的电化学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Sinnott其他文献
Susan Sinnott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Sinnott', 18)}}的其他基金
The Enrollment Floodgates Are Open - Best Practices in Materials Science and Engineering Undergraduate Education for Rising Enrollments, September 9-11, 2019
招生闸门已打开 - 材料科学与工程本科教育最佳实践,招生人数不断增加,2019 年 9 月 9 日至 11 日
- 批准号:
1842175 - 财政年份:2018
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research - CDMR: Informatics Guided Data Driven Computational Design of Multifunctional Materials
协作研究 - CDMR:信息学引导的数据驱动的多功能材料计算设计
- 批准号:
1556783 - 财政年份:2015
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
- 批准号:
1556811 - 财政年份:2015
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research - CDMR: Informatics Guided Data Driven Computational Design of Multifunctional Materials
协作研究 - CDMR:信息学引导的数据驱动的多功能材料计算设计
- 批准号:
1307840 - 财政年份:2013
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
EAGER: Cyberinfrastructure for Atomistic Materials Science (CAMS)
EAGER:原子材料科学 (CAMS) 的网络基础设施
- 批准号:
1246173 - 财政年份:2012
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Symposium on Tribology: Understanding Friction, Lubrication and Wear Across the Scales; Freiburg im Breisgau, Germany; October 4-8, 2010
摩擦学研讨会:了解各种尺度的摩擦、润滑和磨损;
- 批准号:
1016238 - 财政年份:2010
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Computational Investigation of the Chemical Modification of Polymers and Organic Thin Films by Particle Deposition
通过颗粒沉积对聚合物和有机薄膜进行化学改性的计算研究
- 批准号:
0809376 - 财政年份:2008
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant
Atomic-scale Friction Research and Education Synergy Hub (AFRESH)
原子尺度摩擦研究和教育协同中心 (AFRESH)
- 批准号:
0742580 - 财政年份:2007
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant
U.S.-Japan Cooperative Science: Computational Study of Chemical Reactions and Material Modification during Polyatomic-Ion and Cluster-Surface Deposition
美日合作科学:多原子离子和簇表面沉积过程中化学反应和材料改性的计算研究
- 批准号:
0406491 - 财政年份:2004
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Computational Study of Chemical Reactions and Material Modification during Polyatomic-Ion and Cluster-Surface Deposition
多原子离子和簇表面沉积过程中化学反应和材料改性的计算研究
- 批准号:
0200838 - 财政年份:2002
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
相似国自然基金
基于多尺度多模态脑网络的阿尔茨海默症病理进程研究
- 批准号:62302044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多尺度视角下黄河流域人口就近城镇化空间格局与机制研究
- 批准号:42371266
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度级串吸振超材料的设计与靶向能量转移规律研究
- 批准号:12372021
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
PLA/PPC交替多层薄膜的多尺度结构设计及性能强化研究
- 批准号:52373046
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非周期点阵结构应变梯度均匀化模型与多尺度分析方法研究
- 批准号:12302078
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Standard Grant