EAGER: Continuous, Catalyzed Thermopower Wave Generators Powered by Renewable Biofuels: A New Fuel Cell Concept
EAGER:由可再生生物燃料驱动的连续催化热电波发生器:一种新的燃料电池概念
基本信息
- 批准号:1239073
- 负责人:
- 金额:$ 8.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract#1239073Strano, Michael S.Technical BasisPortable energy storage and delivery is the cornerstone of modern transportation systems and the of the proliferation of portable electronic devices and is a rapidly growing field. Additionally, the development of the newest autonomous and mobile sensors, robots, and off-grid wireless networks, particularly at the micro- and nanoscale, is often hampered today by the lack of high power density energy systems of similar size. Each of todays portable energy technologies has its distinct shortcomings. Batteries are the most familiar form of electrical energy storage, but electrochemical energy density is fundamentally limited compared to storing energy in the chemical bonds of fuels. In addition, batteries slowly lose their charge over years, making them less desirable for long-term energy storage. Supercapacitors offer substantially higher power density (in weight and volume terms), but at the expense of energy density. Moreover, they cannot hold their charge even as long as batteries. Fuel cells and engines can use the large energy density of chemical fuels but are more complicated to fabricate at the small scale, so their power density has been limited so far. Professor Michael Strano of the Massachusetts Institute of Technology has performed some initial studies on an alternative energy device that offers the possibility of supplanting these existing devices.Thermopower wave based energy devices may dramatically increase the energy density of portable power devices more than a factor of 10, with other advantages such as zero storage losses and charge decay. High-conductivity scaffolds, like carbon nanotubes (CNTs), direct a hot chemical reaction wave along their length; the wave also pushes charge carriers to create a high-power pulse of electricity. This fast wave means that thermopower waves can often outperform conventional thermoelectrics using static thermal gradients in terms of power density and may not have the same limits on efficiency (usually about 1-5%)according to Strano. The concept to be tested is whether thermopower fuel cells can be created, which could be operated to generate power continuously; previous devices could only make electrical pulses shorter than a second. This project introduces the new aspect of the addition of metal catalyst nanoparticles to the CNT thermoelectric conduits. By focusing on fuels like formic acid and methanol that can be biologically derived, these generators can use renewable energy sources. This is an ideal EAGER project in that several high risk aspects must be successfully demonstrated. First, wave propagation using formic acid and alternatively methanol must be demonstrated using low- to medium-activity catalytic materials for their decomposition along the length of thermal conduit materials, including carbon nanotube fibers, inorganic nanowires, or grapheme films. Advances in theoretical understanding of these waves will accompany this effort. The choice of catalyst(s) must optimize the activation energy; too low and the fuel will react spontaneously without being controlled by the nanotubes, too high and the required initiation energy will be too large, sapping the efficiency. For liquid-fueled-TWGs to be practical, more common metals like Au, Fe, or Cu must be the active catalyst metal. Beyond this, a target would be to fabricate a working device and demonstrate extended operating life. This is clearly the high risk-high potential return project envisioned for EAGER awards. Broader Impacts For this project, the PI intends to utilize undergraduate and graduate researchers, as a means of fostering diversity in Engineering. The PI notes that the experiments that make up this project seem to be well suited for undergraduates, who adapt and learn quickly how to prepare thermopower wave substrates, and learn how to use the instrumentation. The PI has extensively worked with a large body of undergraduate students in the past, many of whom are gender and racial minorities. It is difficult to develop these aspects in a short EAGER project, so the PI is to be commended for making this effort.
摘要#1239073Strano,Michael S.Technical -Poartable -Poartable存储和交付是现代运输系统的基石和便携式电子设备的扩散,并且是一个快速增长的领域。此外,今天通常由于缺乏相似大小相似的高功率密度能量系统而阻碍了最新的自主和移动传感器,机器人和离网无线网络的开发,尤其是在微观和纳米级的无线网络。今天的每种便携式能源技术都有其独特的缺点。电池是电能存储的最熟悉的形式,但是与在燃料的化学键中存储能量相比,电化学能量密度从根本上受到限制。此外,电池在多年来逐渐失去电荷,从而使其对长期储能的理想不太理想。超级电容器提供了更高的功率密度(体重和体积项),但以能量密度为代价。此外,即使电池可以容纳他们的充电。燃料电池和发动机可以使用较大的化学燃料能量密度,但在小规模上制造更为复杂,因此到目前为止,它们的功率密度一直受到限制。马萨诸塞州科技研究所的迈克尔·斯特拉诺(Michael Strano)教授对替代能源设备进行了一些初步研究,该研究提供了取代这些现有设备的可能性。基于Thermopower Wave的能源设备可能会大大提高便携式电力设备的能量密度,而这些设备的能量密度超过了10倍,而零储存损失和充电损失和充电损失。高导电性支架,例如碳纳米管(CNT),将热化学反应波沿其长度引导。该波还推动了电载体以创建高功率脉冲。这种快速波意味着,在功率密度方面,热电波通常可以使用静态热梯度胜过常规的热电学,并且根据Strano的效率(通常约为1-5%)的限制可能没有相同的限制。要测试的概念是是否可以创建热电器燃料电池,可以操作以连续产生动力。以前的设备只能使电脉冲短于一秒钟。该项目介绍了将金属催化剂纳米颗粒添加到CNT热电导管中的新方面。通过专注于可以在生物学上衍生的甲酸和甲醇等燃料,这些发电机可以使用可再生能源。这是一个理想的急切项目,因为必须成功证明几个高风险方面。首先,必须使用低至中级催化材料沿热导管材料的长度(包括碳纳米管纤维,无机纳米线或墨西米膜)进行分解,使用甲酸和甲醇的波传播。对这些浪潮的理论理解的进步将伴随这项努力。催化剂的选择必须优化活化能;太低,燃料会自发地反应而不会受纳米管的控制,太高,所需的启动能量太大,从而降低了效率。为了使液体燃料 - TWG是实用的,更常见的金属,例如Au,Fe或Cu,必须是活性催化剂金属。除此之外,目标是制造一个工作设备并展示延长的运营生活。显然,这是渴望奖励的高风险最高潜在回报项目。 PI对该项目的影响更大,打算利用本科和研究生研究人员,以促进工程学的多样性。 PI指出,构成该项目的实验似乎非常适合本科生,他们适应和快速学习如何准备热电波底物,并学习如何使用仪器。 PI过去曾与大量的本科生合作,其中许多是性别和种族少数群体。在一个简短的急切项目中很难发展这些方面,因此在做出这一努力方面,PI值得称赞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Strano其他文献
Michael Strano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Strano', 18)}}的其他基金
Developing Nanosensor Chemical Cytometry (NCC) to Support the Development of Cellular Therapeutics
开发纳米传感器化学细胞术 (NCC) 以支持细胞治疗的发展
- 批准号:
2124194 - 财政年份:2021
- 资助金额:
$ 8.15万 - 项目类别:
Continuing Grant
Understanding Gas Transport through Nanopores in Graphene Membranes
了解石墨烯膜中纳米孔的气体传输
- 批准号:
1907716 - 财政年份:2019
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
RUI-Collaborative Research-Electrokinetic Transport and Electric Field Control of Ion Motion through the Interior of Single-Walled Carbon Nanotubes
RUI-合作研究-单壁碳纳米管内部离子运动的电动输运和电场控制
- 批准号:
1904453 - 财政年份:2019
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
EAGER: Detection Of In Vivo Corticosterone In Mice Using Cophmore Engineering And Fluorescent Carbon Nanotube Sensors
EAGER:使用 Cophmore 工程和荧光碳纳米管传感器检测小鼠体内皮质酮
- 批准号:
1445131 - 财政年份:2014
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
Collaborative Proposal:RUI: Single-Walled Carbon Nanotube Nanopores for Motion Control of Biologically Important Molecules and Ions and Undergraduate Training in Nanopore Transport
合作提案:RUI:用于生物重要分子和离子运动控制的单壁碳纳米管纳米孔以及纳米孔传输的本科生培训
- 批准号:
1306529 - 财政年份:2013
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
Near Infrared Fluorescent Single Walled Carbon Nanotubes as Novel Solution Phase Optical Sensing Materials Proposal Renewal
近红外荧光单壁碳纳米管作为新型溶液相光学传感材料提案更新
- 批准号:
1213622 - 财政年份:2012
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
Near Infrared Fluorescent Single Walled Carbon Nanotubes as Novel Solution Phase Optical Sensing Materials - Proposal Renewal
近红外荧光单壁碳纳米管作为新型溶液相光学传感材料 - 提案更新
- 批准号:
0753020 - 财政年份:2007
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
PECASE: Understanding and Exploiting the Surface Chemistry of Carbon Nanotubes: Optical Methods and Chemical Pathways for Manipulation, Control and Assembly at the Nanoscale
PECASE:理解和利用碳纳米管的表面化学:纳米尺度操纵、控制和组装的光学方法和化学途径
- 批准号:
0758352 - 财政年份:2007
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
NIRT: Single molecule detection in living cells using carbon nanotube optical probes
NIRT:使用碳纳米管光学探针进行活细胞中的单分子检测
- 批准号:
0753036 - 财政年份:2007
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
NIRT: Single molecule detection in living cells using carbon nanotube optical probes
NIRT:使用碳纳米管光学探针进行活细胞中的单分子检测
- 批准号:
0708459 - 财政年份:2007
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
相似国自然基金
表面双功能修饰ZnO光催化剂及其气固相甲烷连续氧化制甲醇的性能与机理研究
- 批准号:22372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
光酶级联催化微反应系统内连续合成手性苯乙醇的应用基础研究
- 批准号:22378227
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于固定化纳米反应器的连续流酶催化及限域效应研究
- 批准号:22378120
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非均相肽催化剂的设计合成及其在连续流不对称Aldol反应中的应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非均相肽催化剂的设计合成及其在连续流不对称Aldol反应中的应用
- 批准号:22201186
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
- 批准号:
2753054 - 财政年份:2026
- 资助金额:
$ 8.15万 - 项目类别:
Studentship
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
- 批准号:
2345803 - 财政年份:2024
- 资助金额:
$ 8.15万 - 项目类别:
Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 8.15万 - 项目类别:
Standard Grant