Investigating the Mechanistic Basis and Adaptive Significance of the Coordination of Plant Growth by External and Internal Cues

研究内外线索协调植物生长的机制基础和适应性意义

基本信息

  • 批准号:
    1238040
  • 负责人:
  • 金额:
    $ 153.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

PI: Stacey Harmer (University of California-Davis)Co-PI: Ben Blackman (University of Virginia)Plants optimize their use of local resources by synchronizing their growth with day/night cycles, resulting in daily rhythms in leaf, stem, and root growth. This coordination is accomplished through an intricate interplay between the light signaling, circadian clock, and hormone signaling networks. However, the manner in which these networks interact to control plant growth is poorly understood. This project exploits the robust ability of sunflower to track the sun to characterize pathways that coordinate plant growth with daily environmental fluctuations. First, developmental and environmental factors that control solar tracking will be defined. Next, high-throughput analysis of hormone and gene transcript levels in different portions of solar tracking stems will be carried out, allowing the identification of candidate genes and pathways controlling these growth rhythms. Finally, genome-enabled association and linkage mapping techniques will take advantage of the abundant natural variation present in common sunflower and its wild relatives to provide essential information about the role of solar tracking in plant adaptation to the environment. Together, these studies will elucidate the interactions between diverse signaling networks that optimize plant growth with environmental changes and provide insights into ways to improve plant performance.Plant yield is enhanced by daily growth patterns of stems and leaves that allow more efficient photosynthesis and higher water use efficiency. Although a number of molecular pathways that regulate plant growth have been identified, an understanding of how they are coordinated with each other and with environmental cues remains elusive. Solar tracking in sunflower is an extremely appropriate trait for addressing these basic questions since it provides a unique entry point to determine how internal and external cues regulate growth across a single organ. By asking fundamental questions about how this coordination occurs and evolves, these studies will reveal important insights into how to enhance crop plant performance and conserve plant diversity in the face of global climate change and an increasing human population. In addition, this project will generate extensive resources that will be useful to the entire Compositae community. To provide public access to these resources, transcriptome and functionally annotated marker data will be deposited in public databases including the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/sra/), the Compositae Genome Project (http://compgenomics.ucdavis.edu/), the Sunflower Genome Resources Consortium (http://www.sunflowergenome.org), and DRYAD (http://datadryad.org/). Germplasm will be deposited with the National Plant Germplasm System (http://www.ars-grin.gov/npgs/). A student crowd-sourcing method will be developed for the analysis of time-lapse videos of plants grown in natural and controlled environments. This image analysis software developed with the iPlant Collaborative will be made freely available via the iPlant Phytobisque web portal (https://pods.iplantcollaborative.org/wiki/display/ipg2p/PhytoBisque). Finally, cross-disciplinary training in genomic, ecological, and quantitative approaches will be provided for the undergraduate and graduate students and post-doctoral fellows involved in these studies.
PI:Stacey Harmer(加利福尼亚大学戴维斯大学)Co-PI:本·布莱克曼(Ben Blackman)(弗吉尼亚大学)工厂通过将其增长与白天/夜间周期同步,从而优化其对本地资源的使用,从而导致叶子,茎和根生长的每日节奏。通过光信号,昼夜节律和激素信号网络之间的复杂相互作用来实现这种协调。但是,这些网络相互作用以控制植物的生长的方式知之甚少。该项目利用了向日葵追踪太阳的强大能力,以表征将植物生长与每日环境波动协调的途径。首先,将定义控制太阳能跟踪的发展和环境因素。接下来,将对太阳跟踪茎的不同部分的激素和基因转录水平进行高通量分析,从而鉴定候选基因和控制这些生长节律的途径。最后,支持基因组的关联和连锁映射技术将利用普通向日葵及其野生亲戚中存在的丰富自然变异,以提供有关太阳能跟踪在植物适应环境中的作用的基本信息。总之,这些研究将阐明各种信号网络之间的相互作用,这些信号网络通过环境变化优化植物的生长,并为改善植物性能的方式提供见解。植物的产量通过茎和叶的每日生长模式增强,从而提高了更有效的光合作用和更高的用水效率。 尽管已经确定了许多调节植物生长的分子途径,但了解它们如何相互协调以及与环境提示的理解仍然难以捉摸。向日葵中的太阳能跟踪是解决这些基本问题的极其合适的特征,因为它提供了一个独特的切入点来确定内部和外部线索如何调节单个器官的增长。 通过询问有关这种协调如何发生和演变的基本问题,这些研究将揭示有关如何增强作物植物绩效并在面对全球气候变化和人口增加的人口增强的植物多样性方面的重要见解。 此外,该项目将产生广泛的资源,这些资源将对整个Compositae社区有用。 To provide public access to these resources, transcriptome and functionally annotated marker data will be deposited in public databases including the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/sra/), the Compositae Genome Project (http://compgenomics.ucdavis.edu/), the Sunflower Genome Resources Consortium (http://www.sunflowergenome.org)和Dryad(http://datadryad.org/)。 种质将沉积在国家植物种质系统(http://www.ars-grin.gov/npgs/)中。将开发一种学生群源方法,以分析在自然和受控环境中生长的植物的延时视频。使用Iplant协作开发的图像分析软件将通过iPlant Phytobisque Web Portal(https://pods.iplantcollaborative.org/wiki/wiki/display/ipg2p/phytobisque)免费提供。最后,将为参与这些研究的本科生和研究生以及博士后研究员提供基因组,生态和定量方法的跨学科培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stacey Harmer其他文献

Stacey Harmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stacey Harmer', 18)}}的其他基金

Regulation of pre-mRNA splicing by the circadian system
昼夜节律系统对前体 mRNA 剪接的调节
  • 批准号:
    2309854
  • 财政年份:
    2023
  • 资助金额:
    $ 153.38万
  • 项目类别:
    Standard Grant
RESEARCH-PGR: Investigating how internal and external cues coordinate floral organ development and the consequences for plant reproduction
研究-PGR:研究内部和外部线索如何协调花器官发育以及对植物繁殖的影响
  • 批准号:
    1759942
  • 财政年份:
    2018
  • 资助金额:
    $ 153.38万
  • 项目类别:
    Continuing Grant
Circadian Regulation of Auxin Signal Transduction
生长素信号转导的昼夜节律调节
  • 批准号:
    0616179
  • 财政年份:
    2006
  • 资助金额:
    $ 153.38万
  • 项目类别:
    Standard Grant

相似国自然基金

基于可控时域干涉光源的超精细光谱成像定标机理及其应用基础研究
  • 批准号:
    12304324
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大型交通基础设施建设行为与生态环境非对称耦合机理研究
  • 批准号:
    72371043
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于位移放大的浸没式大流量二维高速开关阀耦合工作机理及基础设计理论研究
  • 批准号:
    52375067
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
波流作用下近海沙波活动区单桩基础局部冲刷机理研究
  • 批准号:
    52301324
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
冲击荷载作用下节理岩体灾变机理及协同控制基础研究
  • 批准号:
    52374128
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
  • 批准号:
    2241230
  • 财政年份:
    2024
  • 资助金额:
    $ 153.38万
  • 项目类别:
    Standard Grant
Investigating the mechanistic basis of photon FLASH radiotherapy in tumours & normal tissues
研究光子闪光放射治疗肿瘤的机制基础
  • 批准号:
    MR/Y012097/1
  • 财政年份:
    2024
  • 资助金额:
    $ 153.38万
  • 项目类别:
    Research Grant
Integrating deep phenotyping and functional genomics to understand the mechanistic basis of primary lymphatic anomalies
整合深层表型分析和功能基因组学,了解原发性淋巴异常的机制基础
  • 批准号:
    MR/Y013786/1
  • 财政年份:
    2024
  • 资助金额:
    $ 153.38万
  • 项目类别:
    Research Grant
Mechanistic Basis for ERK in driving KRAS-dependent pancreatic cancer
ERK 驱动 KRAS 依赖性胰腺癌的机制基础
  • 批准号:
    10739653
  • 财政年份:
    2023
  • 资助金额:
    $ 153.38万
  • 项目类别:
Mechanistic Basis for Non-Canonical Translation in Neurological Disease
神经系统疾病非规范翻译的机制基础
  • 批准号:
    10591832
  • 财政年份:
    2023
  • 资助金额:
    $ 153.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了