Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and Characterization
合作研究:采用涉及第一性原理建模、合成和表征的综合策略优化染料敏化太阳能电池的设计和运行
基本信息
- 批准号:1234993
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Soroush, Masoud / Lee, DaeyeonProposal Number: 1236180 / 1234993Institution: Drexel University / University of PennsylvaniaTitle: Collaborative Research: Optimal Design and Operation of Dye Sensitized Solar Cells Using an Integrated Strategy Involving First-Principles Modeling, Synthesis, and CharacterizationThis project employs an integrated research strategy involving first principles mathematical modeling and simulation, synthesis and characterization to design solid-state dye sensitized solar cells (DSSCs) with optimal performance, and optimally operate and integrate the cells. Current DSSC technology faces limitations from significant photogenerated charge recombination losses at the photoanode-electrolyte interface. Central to this research is the hypothesis that higher power conversion efficiencies will be obtained by reducing major losses in electrical conduction within the photoanode and electrolyte of the cell. A holistic approach will be taken where a first principles solid-state DSSC mathematical model will provide a detailed understanding of charge transport behavior, which will then efficiently guide the design and fabrication of effective photoanodes and electrolytes that mitigate recombination losses. This approach is expected to lead to design of new energy materials, fabrication of optimized next generation DSSCs with significantly higher solar cell efficiency above current state-of-the-art, and optimal operation and integration of the cells. The ultimate goal of this project is to design and test a highly-efficient DSSC array through model-based optimal design, integration and operation. The proposed study will be conducted using the integrated research strategy. The specific goals of this project are: (a) Develop a detailed macroscopic first principles mathematical model of solid-state DSSCs. (b) Using the developed predictive model, search the DSSC design parameter space systematically to arrive at an optimal design of DSSCs. (c) Investigate the effect of electrophoretic deposition parameters on the structure and composition of TiO2-carbon nanotube (CNT) composites. (d) Study initiated chemical vapor deposition (iCVD) synthesis and processing conditions on pore filling and resulting polymer structure and properties. (e) Fabricate and characterize DSSCs integrating iCVD polymer electrolytes and hole conductors. (f) Fabricate and characterize solid-state DSSCs incorporating TiO2/CNT photoanodes and iCVD polymer electrolytes and hole conductors.The proposed project is expected to benefit society as a whole as we gain a predictive model for creating enhanced energy materials as well as the necessary components for significantly increasing DSSC efficiency above the current ~11% which has been the record for the past 15 years, and approach the theoretical limit of ~30%. In addition, the fundamental knowledge of model and materials development has practical applications in other energy devices such as in fuel cells, supercapacitors and batteries. The ability to create viable, lighter and less expensive polymer and organic based solar cells is expected to establish a strong intellectual property position for replacing silicon technology, and open the door to flexible photovoltaics. The PIs and Co-PI will train and mentor one pre-doctoral and one Master?s research assistants as well as six undergraduate (REU) and several local high school students. The students will participate in broad range of research activities from mathematical modeling to synthesis, processing and characterization. The PIs also plan to be actively involved in various outreach scientific and technological events and activities in the Philadelphia area. The project results will be released to the public at conferences and in journal and conference proceedings papers.
PI:Soroush,Masoud / Lee,DaeyeonPropopals编号:1236180/1234993INSTITIOTIT以最佳性能设计固态染料敏化太阳能电池(DSSC)的仿真,合成和表征,并最佳地操作和整合细胞。当前的DSSC技术面临着光阳极 - 电解质界面处的显着光生电荷重组损失的局限性。这项研究的核心是假设,即通过降低细胞光阳极和电解质内电传导的重大损失,将获得更高的功率转换效率。将采取一种整体方法,即第一原理固态DSSC数学模型将对电荷运输行为提供详细的理解,然后将有效地指导有效的光轴台和电解质的设计和制造,以减轻重组损失。预计这种方法将导致设计新的能源材料,制造优化的下一代DSSC,其太阳能电池效率明显高于当前最新的效率,以及细胞的最佳操作和整合。该项目的最终目标是通过基于模型的最佳设计,集成和操作来设计和测试高效的DSSC数组。拟议的研究将使用综合研究策略进行。该项目的具体目标是:(a)开发固态DSSC的详细宏观第一原理数学模型。 (b)使用开发的预测模型,系统地搜索DSSC设计参数空间,以达到DSSC的最佳设计。 (c)研究电泳沉积参数对TIO2-碳纳米管(CNT)复合材料的结构和组成的影响。 (d)研究引发化学蒸气沉积(ICVD)的合成和处理条件,并在孔隙填充和产生的聚合物结构和特性上进行了处理。 (e)制造和表征DSSC集成ICVD聚合物电解质和孔导体。 (f)制造和表征结合TiO2/CNT光轴和ICVD聚合物电解质和孔导体的固态DSSC。预计,该建议的项目有望使整个社会受益,因为我们获得了一个预测模型来创建增强的能源材料,以及在当前的〜11%的限制〜11%的范围内,以高于第15年的DSSC效率,并将其记录到15%,并以15%的范围〜15年。此外,模型和材料开发的基本知识在燃料电池,超级电容器和电池等其他能源设备中具有实际应用。预计创造可行,更轻巧和价格较低的聚合物和有机太阳能电池的能力有望建立强大的知识产权,以取代硅技术,并为灵活的光伏电动机打开大门。 PIS和CO-PI将培训和指导一名博士后,一名硕士研究助理以及六个本科生(REU)和几位当地高中生。学生将参加从数学建模到综合,处理和表征的广泛研究活动。 PI还计划积极参与费城地区的各种外展科学和技术事件和活动。该项目结果将在会议以及期刊和会议论文文件中向公众发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daeyeon Lee其他文献
Change in Stripes for Cholesteric Shells via Anchoring in Moderation
通过适度锚定改变胆甾壳的条纹
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lisa Tran;M. Lavrentovich;Guillaume Durey;A. Darmon;M. Haase;Ningwei Li;Daeyeon Lee;K. Stebe;R. Kamien;T. López - 通讯作者:
T. López
Ellipsoidal particles encapsulated in droplets.
椭圆形颗粒封装在液滴中。
- DOI:
10.1039/c4sm00302k - 发表时间:
2014 - 期刊:
- 影响因子:3.4
- 作者:
M. Norton;Teresa Brugarolas;Jonathan Chou;Daeyeon Lee;H. Bau - 通讯作者:
H. Bau
Synthesis and mechanical response of disordered colloidal micropillars.
无序胶体微柱的合成和机械响应。
- DOI:
10.1039/c3cp55422h - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
D. Strickland;Lei Zhang;Yun;D. Magagnosc;Daeyeon Lee;D. Gianola - 通讯作者:
D. Gianola
Moldable Perfluoropolyether–Polyethylene Glycol Networks with Tunable Wettability and Solvent Resistance for Rapid Prototyping of Droplet Microfluidics
具有可调润湿性和耐溶剂性的可模压全氟聚醚-聚乙二醇网络,用于液滴微流体的快速原型制作
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Heon;Syung Hun Han;S. Yadavali;Junhyong Kim;D. Issadore;Daeyeon Lee - 通讯作者:
Daeyeon Lee
Ultrahigh Throughput On‐Chip Synthesis of Microgels with Tunable Mechanical Properties
具有可调机械性能的微凝胶的超高通量片上合成
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jingyu Wu;S. Yadavali;D. Issadore;Daeyeon Lee - 通讯作者:
Daeyeon Lee
Daeyeon Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daeyeon Lee', 18)}}的其他基金
Conference: 2024 Colloidal, Macromolecular and Polyelectrolyte Solutions Gordon Research Conference and Seminar
会议:2024胶体、高分子和聚电解质解决方案戈登研究会议及研讨会
- 批准号:
2331084 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NSF-BSF: Interfacial freezing and shape transformations in surfactant/particle-co-stabilized emulsions
NSF-BSF:表面活性剂/颗粒共稳定乳液中的界面冻结和形状转变
- 批准号:
2110611 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
- 批准号:
2132141 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Effect of Extreme Nanoconfinement on the Thermodynamics and Transport Phenomena in Multiphasic Nanocomposite Coatings
极端纳米约束对多相纳米复合涂层热力学和传输现象的影响
- 批准号:
1933704 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Complexation of charged polymers and nanoparticles at all aqueous interfaces for functional membrane formation
带电聚合物和纳米颗粒在所有水界面处络合以形成功能性膜
- 批准号:
1705891 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Nanostructured Composite Coatings to Harden and Toughen Polymer Surfaces
用于硬化和增韧聚合物表面的纳米结构复合涂层
- 批准号:
1662695 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
GOALI: Single droplet level understanding of phase inversion emulsification to enable continuous processing
GOALI:单液滴水平了解转相乳化以实现连续加工
- 批准号:
1604536 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SNM: Scalable Manufacturing of Nanostructured Membranes for Fracking Wastewater Treatment
SNM:用于水力压裂废水处理的纳米结构膜的可规模化制造
- 批准号:
1449337 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
ACS Symposium on Emulsions, Bubbles and Foams: Fundamentals and Applications, New Orleans, Louisiana, April 7th - 11th, 2013
ACS 乳液、气泡和泡沫研讨会:基础知识和应用,路易斯安那州新奥尔良,2013 年 4 月 7 日至 11 日
- 批准号:
1219323 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Understanding Electrostatic Interactions in Non-Polar Media for Generation of Nanostructured Thin Films
职业:了解非极性介质中的静电相互作用以生成纳米结构薄膜
- 批准号:
1055594 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
基于情境最佳化的模型预测控制方法研究
- 批准号:62303416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果学习的脓毒症最佳治疗策略与效应估计关键技术研究
- 批准号:62371438
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Camassa-Holm方程和短脉冲型方程的最佳适定性与爆破现象研究
- 批准号:12301298
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于光域正交基分解的微波光子宽带矢量信号最佳接收方法研究
- 批准号:62305266
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
线性正则变换域致密气储层的地震信号最佳时频表征及预测研究
- 批准号:42204116
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant