A Deeper Understanding of Small-Scale Phenomena in Heat Pipes through a Higher Order Lattice Boltzmann Method

通过高阶格子玻尔兹曼方法更深入地了解热管中的小尺度现象

基本信息

  • 批准号:
    1233106
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

CBET-1233106PI: SchaeferHeat pipes are compact, reliable devices used for transporting heat, but there is a lack of understanding of their microscale fluid flow behavior. In order to gain deeper insights into the nature of these types of flows, which also often occur in complicated geometries, we will model the flows using a technique known as the lattice Boltzmann method. While that method is very useful in analyzing complicated flows, it still suffers from inadequate development on the inclusion of thermal effects. Therefore, we propose the development of advanced, higher order (more accurate) lattice Boltzmann-based numerical simulations that can further our knowledge of micro thermal-fluid phenomena in heat pipes. The intellectual merit of the proposed work comes both from developing a more rigorous, realistic, and versatile computational tool, and from the deeper understanding of complex flows that can be gained as a result. The fundamental underpinning of all lattice Boltzmann models are particle distribution functions that describe the density and momentum (and sometimes temperature) of the fluid elements. To develop a higher-order thermal lattice Boltzmann model, we will expand the equilibrium particle distribution function to the fourth order. In order to model multiple phases, we will incorporate fluid particle interactions using a better description of the effective mass. Combining these approaches means that the forces acting on the particles will need to be discretized over a large number of velocities, which is numerically complicated. However, while this is quite challenging, it will likely lead to additional insights into the contribution of the various aspects of the lattice Boltzmann formulation to instabilities and inaccuracies in the numerical simulations, thereby expanding the applicability of the lattice Boltzmann method. The model will be validated using the vast range of experimental data available in the literature. The resulting model will then be able to explore the effect of variations in geometry, fluid properties, etc., on heat pipe efficiency, and will lead to a better understanding of the underlying physics of the micro fluid phenomena that drive heat pipe systems.More accurate simulations of multiphase, multicomponent, thermal flows, particularly in small-scale and/or complicated geometries have many applications. Improving heat pipe performance can lead to increases in the overall energy efficiency of computer cooling systems, which currently consume huge amounts of power (a typical data center uses 1/3 of its energy consumption for cooling). The same is true for many other more conventional heat exchangers in the power generating and HVAC&R industries; it may be possible to design more efficient condensers, evaporators, generators, etc., by combining micromanufacturing processes with accurate simulations of the phase transitions that occur in those channels and surfaces. Improving the energy efficiency can directly lead to both economic and environmental savings. There are also educational benefits from the study of heat pipes. The devices will be used as demonstration units for undergraduate classes, in order to provide an impetus for discussion of phase change and heat transfer phenomena. Design teams of upper-level undergraduates will also help to translate heat pipe concepts (and their underlying principles) to the high-school and middle-school level, through designing and building demonstration units that examine different materials, working fluids, and configurations, as well as applications for heat pipes, such as cooling devices for overclocking processors and the creation of heat pipe boats.
CBET-1233106PI:Schaeferheat管道是紧凑的可靠设备,用于运输热量,但缺乏对它们的显微镜流体流动行为的了解。为了更深入地了解这些类型的流的性质,这些流量通常也会出现在复杂的几何形状中,我们将使用称为晶格玻尔兹曼方法的技术对流进行建模。尽管该方法在分析复杂的流动方面非常有用,但它仍然存在于纳入热效应的发展不足。因此,我们提出了基于高级,高阶(更准确)晶格玻璃体的数值模拟的发展,这些仿真可以进一步提高我们对热管中微热流体现象的了解。拟议工作的智力优点既来自开发更严格,更现实和多才多艺的计算工具,又是对可以获得的复杂流动的更深入的了解。所有晶格Boltzmann模型的基本基础是描述流体元素的密度和动量(有时温度)的粒子分布函数。为了开发高阶热晶格玻尔兹曼模型,我们将将平衡粒子分布函数扩展到第四阶。为了对多个阶段进行建模,我们将使用更好地描述有效质量来结合流体颗粒相互作用。结合这些方法意味着,作用在粒子上的力将需要在大量速度上离散,这在数值上是复杂的。但是,尽管这很具有挑战性,但它可能会导致对晶格Boltzmann配方对数值模拟中不稳定性和不准确性的各个方面的贡献的更多见解,从而扩大了Lattice Boltzmann方法的适用性。该模型将使用文献中可用的大量实验数据进行验证。然后,所得模型将能够探索几何,流体特性等变化对热管效率的影响,并可以更好地理解驱动热管系统的微流体现象的潜在物理学。更准确地模拟了多个酶,多组分,热流,尤其是在小尺度和/或复杂的地球上,许多应用程序都具有许多应用程序。改善热管性能会导致计算机冷却系统的整体能源效率提高,该系统目前会消耗大量功率(典型的数据中心使用1/3的能源消耗进行冷却)。对于发电和HVAC&R Industries中的许多其他更常规的热交换器也是如此。通过将微制造过程与对这些通道和表面中发生的相变的准确模拟相结合,可以设计更有效的冷凝器,蒸发器,发电机等。提高能源效率可以直接导致经济和环境节省。热管的研究也有教育益处。这些设备将用作本科阶层的示范单位,以便为相变和传热现象的讨论提供动力。高级本科生的设计团队还将通过设计和建造示范单元来将热管概念(及其基本原理)转化为高中和中学水平,这些单元的设计和建造示范单元,这些单元检查不同的材料,工作液,配置,以及用于热管的热水管道(例如,用于过热式流程和热水管道的冷却式)的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Schaefer其他文献

Modern deep neural networks for Direct Normal Irradiance forecasting: A classification approach
  • DOI:
    10.1016/j.prime.2024.100853
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Muhammad Saud Ul Hassan;Kashif Liaqat;Laura Schaefer;Alexander J. Zolan
  • 通讯作者:
    Alexander J. Zolan
Individualized Positive End-expiratory Pressure Titration Strategies in Superobese Patients Undergoing Laparoscopic Surgery: Prospective and Nonrandomized Crossover Study
接受腹腔镜手术的超级肥胖患者的个体化呼气末正压滴定策略:前瞻性和非随机交叉研究
  • DOI:
    10.1097/aln.0000000000004631
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Christoph Boesing;Laura Schaefer;Marvin Hammel;M. Otto;S. Blank;P. Pelosi;P. Rocco;T. Luecke;Joerg Krebs
  • 通讯作者:
    Joerg Krebs
Implementation of mentalization-based treatment in a day hospital program for eating disorders-A pilot study.
在日间医院项目中实施基于心理化的饮食失调治疗——一项试点研究。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    A. Zeeck;Katharina Endorf;S. Euler;Laura Schaefer;Inga Lau;Kristina Flösser;Valeria Geiger;A. F. Meier;Peter Walcher;C. Lahmann;A. Hartmann
  • 通讯作者:
    A. Hartmann
Intelligent applications of cloud computing in enhancing health care services
  • DOI:
    10.1016/j.ijin.2020.11.004
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Schaefer;Arvind Atreya
  • 通讯作者:
    Arvind Atreya
Effects of prone positioning on lung mechanical power components in patients with acute respiratory distress syndrome: a physiologic study
俯卧位对急性呼吸窘迫综合征患者肺机械动力成分的影响:一项生理学研究
  • DOI:
    10.1186/s13054-024-04867-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Christoph Boesing;Joerg Krebs;Alice Marguerite Conrad;Matthias Otto;Grietje Beck;Manfred Thiel;P. Rocco;T. Luecke;Laura Schaefer
  • 通讯作者:
    Laura Schaefer

Laura Schaefer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Schaefer', 18)}}的其他基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2223078
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Workshop Series on Thermal Issues in Climate Change
气候变化中的热问题研讨会系列
  • 批准号:
    2137067
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
A Deeper Understanding of Small-Scale Phenomena in Heat Pipes through a Higher Order Lattice Boltzmann Method
通过高阶格子玻尔兹曼方法更深入地了解热管中的小尺度现象
  • 批准号:
    1644426
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Environmentally Sound: High Performance, Compact Thermoacoustic Refrigeration
无害环境:高性能、紧凑型热声制冷
  • 批准号:
    0729905
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
IGERT: Sustainability Initiative in Engineering
IGERT:工程可持续发展倡议
  • 批准号:
    0504345
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Microscale Two-Phase Zeotropic Flow in Energy Systems
职业:能源系统中的微尺度两相非共沸流
  • 批准号:
    0238841
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

小麦抗旱耐盐小分子多肽基因TaCLE3B的功能鉴定及分子机理解析
  • 批准号:
    U22A20471
  • 批准年份:
    2022
  • 资助金额:
    252.00 万元
  • 项目类别:
    联合基金项目
小偃麦盐胁迫响应转录因子TtFAR1的功能及调控机理解析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
小偃麦盐胁迫响应转录因子TtFAR1的功能及调控机理解析
  • 批准号:
    32160442
  • 批准年份:
    2021
  • 资助金额:
    35.00 万元
  • 项目类别:
    地区科学基金项目
非小细胞肺癌干性抑癌基因的系统筛选及机理解析
  • 批准号:
    81972778
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
海量数据小训练样本集环境下的高效图像理解
  • 批准号:
    61572451
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

膠芽腫微小環境の理解に基づくNKT細胞標的治療の開発
基于对胶质母细胞瘤微环境的了解开发 NKT 细胞靶向治疗
  • 批准号:
    23K24441
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
微小環境変化により小腸免疫細胞の1細胞時空間的制御機構破綻がひきおこす疾患の理解
了解微环境变化导致小肠免疫细胞单细胞时空控制机制破坏而引起的疾病
  • 批准号:
    23K27590
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
卵巣癌における免疫細胞の空間的情報に着目した病理AIによる免疫学的微小環境の解明
利用病理人工智能阐明卵巢癌免疫细胞的空间信息的免疫微环境
  • 批准号:
    24KJ1404
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
分単位の迅速な小胞体リモデリングの分子基盤と生理的意義の解明
阐明几分钟内快速内质网重塑的分子基础和生理意义
  • 批准号:
    24K09365
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
小児希少がんにおけるユビキチン/プロテアソーム系の総合的理解に基づく腫瘍制御
基于对儿科罕见癌症中泛素/蛋白酶体系统的全面了解的肿瘤控制
  • 批准号:
    24K11571
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了