Collaborative Research: Tailoring organic/semiconductor interfaces by using tunable linker dipoles
合作研究:使用可调连接偶极子定制有机/半导体界面
基本信息
- 批准号:1213669
- 负责人:
- 金额:$ 31.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Chemical Structure, Dynamics and Mechanisms Program supports collaborative research between Professor Robert Bartynski of Rutgers University at New Brunswick and Professor Elena Galoppini at Rutgers University at Newark on the synthesis and characterization of tunable linker dipoles for improved solar energy conversion devices. This research, which brings together a synthetic chemist and a surface physicist, aims to achieve precise control of the electronic properties of the interface between an organic molecule and a semiconductor by tailoring the properties of the organic overlayer at the molecular level. Ultimately, this work will enhance the fundamental understanding and performance of organic-inorganic and organic-organic hybrid materials that are used in a wide variety of application areas including molecular electronics and photovoltaics. By molecular design of a variety of functional organic compounds, the research team will modify molecular energy levels (HOMO-LUMO) alignment, tune the donation and withdrawal of charge, and influence molecule bonding geometries at organic molecule/semiconductor interfaces. This will be accomplished using compounds with a Head-Linker-Anchor (HLA) configuration bound to metal oxide (TiO2 and ZnO) or organic (rubrene) semiconductor surfaces. The head groups (H) will be either organic chromophores or electron donor or acceptor groups, and the linker units (L) will contain an internal molecular dipole. The rigid linkers will be designed to bind at a well-defined orientation and distance from the semiconducting organic or inorganic surfaces. The electronic structure, dye-oxide energy level alignment, binding geometry, and effects of intermolecular interactions of HLA compounds on semiconductor substrates will be studied using a wide array, state-of-the-art ultrahigh vacuum-based surface characterization techniques. Spectroscopic and electrochemical measurements will complement the surface studies. The broader impact of this research, derived mainly from molecular level control of the organic/semiconductor interface, will touch many areas of science and technology including photocatalytic materials, photovoltaics, light-emitting diodes, and other devices. The educational component of the program will generate two innovative research modules where students gain hands-on experience that will solidify the connection between basic scientific research and technological advances that benefit society. Students will build simple solar cells based on molecules similar to those used in this research, but found in everyday items. The modules are easily adaptable for undergraduate laboratories at the two Rutgers campuses, and for demonstrations that will involve K-12 students. These activities will target underrepresented groups including high-school students from the Newark urban area. Student exchanges and co-advising of Ph.D. theses are integral to the program and the interdisciplinary collaboration between a synthetic chemist and a physicist will broaden the scientific education and training of the students from both laboratories.
化学结构,动力学和机制计划支持New Brunswick的Rutgers University的Robert Bartynski教授与Newark Rutgers University的Elena Galoppini教授之间的合作研究,涉及可调连接器偶极子的合成和表征,以改善阳光能量转换式启动。这项研究将合成化学家和表面物理学家汇集在一起,旨在通过在分子水平下定制有机叠加剂的性质来精确控制有机分子和半导体之间界面的电子特性。最终,这项工作将增强有机无机和有机有机杂种材料的基本理解和性能,这些材料用于多种应用领域,包括分子电子和光伏。通过各种功能性有机化合物的分子设计,研究团队将修改分子能水平(HOMO-LUMO)对齐,调整电荷的捐赠和戒断,并影响有机分子/半管接口的分子键合几何形状。这将使用与金属氧化物(TiO2和ZnO)或有机(rubrene)半导体表面结合的头链锚定(HLA)构型的化合物来完成。头组(H)将是有机发色团或电子供体或受体组,接头单位(L)将包含内部分子偶极子。刚性接头将设计为在定义明确的方向和距离半导体有机或无机表面的距离上结合。电子结构,染料 - 氧化能水平比对,结合几何形状以及HLA化合物的分子间相互作用将使用宽阵列,最先进的超高真空表面特性技术研究对半导体底物进行研究。光谱和电化学测量将补充表面研究。这项研究的广泛影响主要源自有机/半导体界面的分子水平控制,它将接触许多科学和技术领域,包括光催化材料,光伏,发光二极管和其他设备。该计划的教育部分将产生两个创新的研究模块,学生获得动手经验,以巩固基础科学研究与受益社会的技术进步之间的联系。学生将根据与本研究中使用的分子相似的分子来构建简单的太阳能电池,但在日常项目中发现。这些模块很容易适用于两个罗格斯校园的本科实验室,并且用于涉及K-12学生的演示。这些活动将针对代表性不足的团体,包括来自纽瓦克市区的高中生。学生交流和博士学位的共同审议这些是该计划不可或缺的,并且合成化学家与物理学家之间的跨学科合作将扩大来自两个实验室的学生的科学教育和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Galoppini其他文献
Meta-substituted Ru<sup>II</sup> rigid rods for sensitization of TiO<sub>2</sub>
- DOI:
10.1016/j.jphotochem.2009.06.002 - 发表时间:
2009-08-15 - 期刊:
- 影响因子:
- 作者:
Maria Abrahamsson;Olena Taratula;Petter Persson;Elena Galoppini;Gerald J. Meyer - 通讯作者:
Gerald J. Meyer
Elena Galoppini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Galoppini', 18)}}的其他基金
Collaborative Research: Directing molecular assemblies into covalently bonded 2D organic materials
合作研究:将分子组装成共价键合的二维有机材料
- 批准号:
1904654 - 财政年份:2019
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
Collaborative Research: Dye Molecule-Anchored Platinum Nanocatalysts
合作研究:染料分子锚定铂纳米催化剂
- 批准号:
1436674 - 财政年份:2014
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
Collaborative Research: Stepwise Functionalization and Surface Modification for ZnO Nanostructure-based Biosensors
合作研究:基于 ZnO 纳米结构的生物传感器的逐步功能化和表面修饰
- 批准号:
1264488 - 财政年份:2013
- 资助金额:
$ 31.06万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Dye-anchored nanocatalysts for improved solar energy conversion efficiency
EAGER:合作研究:染料锚定纳米催化剂可提高太阳能转换效率
- 批准号:
1107278 - 财政年份:2011
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
NIRT: Electronic Interactions in Hybrid Organic-Nanoparticle Materials
NIRT:混合有机纳米粒子材料中的电子相互作用
- 批准号:
0303829 - 财政年份:2003
- 资助金额:
$ 31.06万 - 项目类别:
Continuing Grant
POWRE: synthesis and study of rigid linkages to anchor molecular coordination compounds to semiconductor nanoparticles
POWRE:将分子配位化合物锚定到半导体纳米粒子的刚性连接的合成和研究
- 批准号:
0074347 - 财政年份:2000
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
Novel Organic Cages as Moduli for Extended Three-dimensional Networks
新型有机笼作为扩展三维网络的模块
- 批准号:
9709330 - 财政年份:1997
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225370 - 财政年份:2023
- 资助金额:
$ 31.06万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308630 - 财政年份:2023
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225369 - 财政年份:2023
- 资助金额:
$ 31.06万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
- 批准号:
2308631 - 财政年份:2023
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
- 批准号:
2312247 - 财政年份:2023
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant