Massively Scalable Quantum Entanglement and Quantum Processing in the Optical Frequency Comb
光频梳中的大规模可扩展量子纠缠和量子处理
基本信息
- 批准号:1206029
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum computing promises exponential speedups over classical computing for specific but important tasks, such as data encryption and the simulation of quantum physics. However, the practical implementation of quantum computing faces daunting challenges: the need for scalability of "Qbit" (here, "Qmode") registers and the need to circumvent decoherence. This project from Prof. Pfister at the University of Virginia (UVa) aims at implementing large-scale entanglement in the periodic emission spectrum of an optical parametric oscillator (OPO), a.k.a. the "quantum optical frequency comb" (QOFC). It is based on the recent realization by Pfister's group of high-quality entanglement in a world-record 60 eigenmodes ("Qmodes") of the QOFC of a single OPO, into 15 sets of 4 Qmodes, each set being in a square cluster state. This successful experiment was the core of the project supported by an NSF award entitled "One-way quantum computing in the optical frequency comb." The objective of the current project is to build on this success and forge ahead toward highly scalable quantum information, along two lines of effort. On the one hand, we seek to generate record-size linear, square-grid, and cubic-lattice cluster states, which enable universal quantum computation. On the other hand, the group is striving to implement the quantum technologies needed for quantum processing in the QOFC. This includes: (i) developing low-loss, highly dispersive optical elements to separate Qmodes, (ii) implementing a network of balanced homodyne detection with high-efficiency PIN photodiodes using integrated optics, and (iii) performing high-efficiency nonGaussian measurements by way of photon-number-resolved detection, which has recently been implemented in Pfister's group at UVa thanks to a collaboration with Sae Woo Nam at NIST and Aaron Miller at Albion College, funded by an NSF MRI award entitled "Development of a photon-number-resolving detector system for universal quantum computing." This ambitious program is tantamount to creating a bona fide quantum computer over continuous variables, and studying quantum information in this context.The broader impacts of this work comprise an active research contribution to the UVa physics graduate and undergraduate programs. One recent undergraduate student was a former Goldwater Scholar who just joined the physics graduate program at Harvard, was a finalist of the 2011 LeRoy Apker Award of the American Physical Society, based on a paper he published with Prof. Pfister. Also stemming from this research, an advanced graduate course "Quantum Optics and Quantum Information" is now taught by the PI on a regular basis. On the interdisciplinary front, this research has spawned worldwide collaborative efforts. Finally, it is important to point out that quantum computing research has stakes in fundamental physics, as well as Defense and National Security: Shor's algorithm for factoring integers exponentially faster would defeat the widely-used RSA encryption protocol. Another direct application of a universal quantum processor of elementary size would be the modeling of presently intractable quantum problems in chemistry, materials science, and condensed-matter physics. Finally, the realization of a scalable quantum register offers possibilities for fundamental tests of quantum mechanics in the regime of mesoscopic entanglement and Schrödinger cats, where theoretical predictions become intractable. As quantum information comes of age, one can thus expect deeply significant scientific discoveries in all fields of the natural sciences.
量子计算有望在特定但重要的任务(例如数据加密和量子物理模拟)上实现比经典计算指数级的加速。然而,量子计算的实际实施面临着艰巨的挑战:对“Qbit”(此处为“Qmode”)的可扩展性的需求。 “)寄存器和规避退相干的需要。弗吉尼亚大学(UVa)Pfister 教授的这个项目旨在在光学参量振荡器的周期性发射光谱中实现大规模纠缠(OPO),又名“量子光学频率梳”(QOFC) 它基于 Pfister 团队最近实现的单个 OPO QOFC 的世界纪录 60 个本征模(“Qmode”)的高质量纠缠。 ,分成 15 组 4 个 Qmode,每组都处于方形簇状态。这个成功的实验是该项目的核心,并获得了 NSF 奖项的支持。 “光学频率梳中的单向量子计算。”当前项目的目标是在这一成功的基础上,朝着高度可扩展的量子信息迈进,一方面,我们寻求创造记录。另一方面,该小组正在努力实现 QOFC 中量子处理所需的量子技术。低损耗、高色散光学元件来分离 Q 模式,(ii) 使用集成光学器件实现具有高效 PIN 光电二极管的平衡零差检测网络,以及 (iii) 通过光子数分辨检测来执行高效非高斯测量,该方法最近已在得益于与 NIST 的 Sae Woo Nam 和 Albion 学院的 Aaron Miller 的合作,该技术已在 UVa 的 Pfister 小组中得到实施,该项目由 NSF MRI 奖题为“发展用于通用量子计算的光子数分辨探测器系统。”这个雄心勃勃的计划相当于在连续变量上创建真正的量子计算机,并在这种背景下研究量子信息。这项工作的更广泛影响包括对以下方面的积极研究贡献:弗吉尼亚大学物理研究生和本科生项目的一名本科生是前金水学者,刚刚加入哈佛大学物理研究生项目,根据他与教授发表的一篇论文,入围了 2011 年美国物理学会 LeRoy Apker 奖的决赛。 。同样源于这项研究,PI 现在定期教授一门高级研究生课程“量子光学和量子信息”。在跨学科方面,这项研究催生了世界范围内的合作。量子计算研究与基础物理学以及国防和国家安全息息相关:Shor 的以指数速度分解整数的算法将击败广泛使用的 RSA 加密协议 基本尺寸通用量子处理器的另一个直接应用是。最后,可扩展量子寄存器的实现为介观纠缠和薛定谔猫领域中的量子力学的基本测试提供了可能性,其中理论预测成为可能。随着量子信息的成熟,人们可以期待在自然科学的所有领域中出现具有深远意义的科学发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Pfister其他文献
Spatiotemporal graph states from a single optical parametric oscillator
来自单个光参量振荡器的时空图状态
- DOI:
10.1103/physreva.101.043832 - 发表时间:
2020 - 期刊:
- 影响因子:2.9
- 作者:
Rongguo Yang;Jing Zhang;Israel Klich;Carlos González-Arciniegas;Olivier Pfister - 通讯作者:
Olivier Pfister
Universal quantum frequency comb measurements by spectral mode-matching
通过光谱模式匹配进行通用量子频率梳测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
B. Dioum;Virginia d'Auria;A. Zavatta;Olivier Pfister;G. Patera - 通讯作者:
G. Patera
Experimental Generation of Cluster-state Entanglement by Phase Modulation of the Quantum Optical Frequency Comb
量子光频梳相位调制簇态纠缠的实验生成
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xuan;Chun;C. González;Avi Pe'er;Olivier Pfister - 通讯作者:
Olivier Pfister
Library and Archives Canada Cataloguing in Publication
加拿大图书馆和档案馆出版编目
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Vincent F. Zelazny;Gwen L. Martin;Maureen Toner;Martha Gorman;Stephen Clayden;Mark Colpitts;Hilary Veen;Betty Godin;Bryce McInnis;Chris Steeves;Lawrence Wuest;Mark R. Roberts;Pat Allen;Serge Allard;Paul Arp;Thierry Arsenault;M. Aubé;Bruce A. Bagnell;Dave Bewick;Gart Bishop;Maryse Bourgeois;Colin Bowling;Sheila Carlisle;Don Carroll;Mark Castonguay;S. Clayden;Nathalie Comeau;Mike Coté;Roger Cox;Peter Cronin;Steve Currie;Greg Davidson;Janette Desharnais;Anthony Diamond;Mike Dillon;Bob Dick;Tim Dilworth;Brent Evered;Sherif Fahmy;Les Fyffe;J. Goltz;L. Hartling;Mike Hayter;Peter Hilder;Harold Hinds;N. Ives;Randy Leblanc;Terry Leonard;Judy Loo;O. Loucks;Ron Loughrey;Andrew MacDougall;Taumey Mahendrappa;Scott Makepeace;Ian Marshall;Martin Marshall;Bruce Matson;Don McAlpine;Randy Miller;Nadine Morris;Tom Ng;Judith O’Connell;Reg Parsons;Christine Paré;D. Perley;Olivier Pfister;Randy Power;Janet Proude;Toon G. Pronk;Lorrie Roberts;Roger Roy;A. Ruitenberg;D. Sabine;Allen Seaman;Inuk Simard;Jamie Simpson;Gérard Sirois;Charles Solomon;Sarah Taylor;Jacques Thibault;Tony Thomas;Jane Tims;Don Vail;Herman vanGroenewoud;Tim Vickers;Ken Webb;Tim Webb - 通讯作者:
Tim Webb
Olivier Pfister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Pfister', 18)}}的其他基金
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
- 批准号:
2219672 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
NSF-BSF: The Phase-Modulated Quantum Optical Frequency Comb: A Simple Platform for One-Way Quantum Computing
NSF-BSF:相位调制量子光频梳:单向量子计算的简单平台
- 批准号:
2112867 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
NSF-BSF: Squeezing the Optical Frequency Comb: Applications to Quantum Computing and Quantum Measurement
NSF-BSF:挤压光频梳:在量子计算和量子测量中的应用
- 批准号:
1820882 - 财政年份:2018
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource
RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源
- 批准号:
1842641 - 财政年份:2018
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Quantum Interferometry with Photon-Subtracted Twin Beams
光子相减双光束量子干涉测量
- 批准号:
1708023 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Quantum Computing and Quantum Simulation in the Optical Frequency Comb
光频梳中的量子计算与量子模拟
- 批准号:
1521083 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
MRI-R2 Consortium: Development of a Photon-Number-Resolving Detector System for Universal Quantum Computing
MRI-R2 联盟:开发用于通用量子计算的光子数分辨探测器系统
- 批准号:
0960047 - 财政年份:2010
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
One-Way Quantum Computing in the Optical Frequency Comb
光频梳中的单向量子计算
- 批准号:
0855632 - 财政年份:2009
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Quantum: Ultrastable heterodyne quantum information
量子:超稳定外差量子信息
- 批准号:
0622100 - 财政年份:2006
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Multipartite Entanglement, Multimode Squeezing, and Non-Gaussian Light from Quantum Cascades and Concurrences
量子级联和并发中的多部分纠缠、多模压缩和非高斯光
- 批准号:
0555522 - 财政年份:2006
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
相似国自然基金
基于光-原子协同操控的可扩展性量子精密测量
- 批准号:
- 批准年份:2022
- 资助金额:291 万元
- 项目类别:
量子马尔可夫模型上的符号验证方法及其扩展研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向可扩展量子比特调控的三维硅基光电混合集成芯片模型与关键技术研究
- 批准号:62274179
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
基于马约拉纳零能模构筑可扩展的拓扑量子比特的基本物理与关键技术问题研究
- 批准号:92165208
- 批准年份:2021
- 资助金额:350 万元
- 项目类别:地区科学基金项目
基于可扩展量子纠缠网络的设备无关量子信息安全模型研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
相似海外基金
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Studentship
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
- 批准号:
10078083 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Collaborative R&D
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
- 批准号:
2340267 - 财政年份:2024
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Scalable semiconductor quantum processor with flip chip bonding technology
采用倒装芯片接合技术的可扩展半导体量子处理器
- 批准号:
IM230100396 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Mid-Career Industry Fellowships
LYRA : A Modular path towards Industrialised and Scalable Quantum Networking
LYRA:通往工业化和可扩展量子网络的模块化道路
- 批准号:
10085813 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Small Business Research Initiative