Understanding the Design and Conduction of Materials for Organic Electronics at the Molecular Level
在分子水平上了解有机电子材料的设计和传导
基本信息
- 批准号:1206202
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Electronic and Photonic Materials Program (EPM) in the Division of Materials Research (DMR) and the Chemical Structure, Dynamics and Mechanisms Program (CSDM) in the Division of Chemistry (CHE).Technical Description: Organic materials as alternates to standard silicon-based semiconductors are fast becoming viable in areas of flexible electronics, sensors and photovoltaics. However, the physical mechanism by which charge transfer occurs in relation to the chemical structure in these systems is not well understood. In this project, important architectural elements of polymers that exhibit the best performance in organic electronics and photovoltaics are dissected to their molecular analogues to study their electronic and photo-induced transport characteristics at the single-molecule level. A series of oligomeric thiophenes are analyzed as analogues of polythiophene and its derivatives to understand the transport characteristics as a function of chemical structure. The scanning tunneling microscope-based break-junction technique is used to measure single-molecule charge transport characteristics and to probe photoconductivity in single-molecule junctions. Finally, analysis to correlate results from single-molecule transport measurements to bulk organic semiconducting device characteristics is used, enabling a multi-scale approach to understanding structure and function of efficient organic semiconductors. Through a combination of synthesis and measurements at the single-molecule level, this project provides molecular design rules for the development of novel materials used for organic electronics and photovoltaics.Non-technical Description: There is a need to understand the governing factors enabling the development of organic semiconductor materials with advanced transport properties to complement their inorganic counterparts. This project bridges the gap between the single-molecule electronic structure components of polymeric semiconductors that exhibit high mobilities and photovoltaic characteristics. Using the fundamental understanding gained from single-molecule experiments enables the design of a new class of materials, which are tested in single molecule junctions as well as device architectures. In addition to developing new compounds that impact organic electronics, an integral part of the project introduces interdisciplinary science to high school, undergraduate and graduate students, aiming to instill a desire to pursue careers in science. The nature of the project requires a close collaboration between the graduate students in the Venkataraman and Campos groups, from Applied Physics and Chemistry. A focus of the PIs is also to recruit undergraduate women and/or minority students to participate in the research and prepare them as competitive applicants for graduate school in the sciences. Finally, basic concepts in organic electronics are adapted for demonstrations at schools in Manhattan.
该项目由材料研究司(DMR)的电子和光子材料计划(EPM)以及化学划分的化学结构,动力学和机制计划(CSDM)共同资助。技术描述:有机材料作为基于标准硅半导体的替代方案,在基于标准的半导体方面可以在灵活的Electronics和Photemonic,Photemonic和Phototors中迅速可容纳。但是,与这些系统中的化学结构相关的电荷转移发生的物理机制尚不清楚。在这个项目中,将有机电子和光伏性能表现出最佳性能的聚合物的重要结构元素剖析到其分子类似物中,以研究其电子和光诱导的单分子水平的传输特性。将一系列的低聚硫苯基分析为聚噻吩及其衍生物的类似物,以理解转运特性是化学结构的函数。基于扫描隧道显微镜的扫描隧道突破连接技术用于测量单分子电荷传输特性和探测单分子连接中的光导率。最后,使用了将单分子传输测量结果与批量有机半导体设备特性相关联的分析,从而实现了一种多尺度方法来理解有效的有机物半导体的结构和功能。通过在单分子水平上的合成和测量的结合,该项目为开发用于有机电子和光伏的新型材料的开发提供了分子设计规则。Non-technical描述:有必要理解具有高级运输特性的有机半导体材料的管理因素,以配备其富有工具的相反分配。该项目弥合了具有较高迁移率和光伏特性的聚合半导体的单分子电子结构组件之间的差距。使用从单分子实验中获得的基本理解,可以设计出新的材料,这些材料在单分子连接以及设备体系结构中进行了测试。除了开发影响有机电子产品的新化合物外,该项目不可或缺的一部分还向高中,本科和研究生介绍了跨学科科学,旨在灌输从事科学职业的愿望。该项目的性质需要来自应用物理和化学的Venkataraman和Campos小组的研究生之间的密切合作。 PI的重点也是要招募本科妇女和/或少数族裔学生参加研究,并为他们作为科学研究生院的竞争申请人做好准备。最后,有机电子中的基本概念适用于曼哈顿学校的示范。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Latha Venkataraman其他文献
Latha Venkataraman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Latha Venkataraman', 18)}}的其他基金
Paired Radical States in Molecular Wires: 1D Topological Insulators and Beyond
分子线中的成对自由基态:一维拓扑绝缘体及其他
- 批准号:
2241180 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Chemistry with Electric Fields (ChEF)
CCI 第一阶段:NSF 电场化学中心 (ChEF)
- 批准号:
2023568 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Towards One-Dimensional Single-Molecule Topological Insulators
走向一维单分子拓扑绝缘体
- 批准号:
1807580 - 财政年份:2018
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Beyond Single-Molecule Conductance: Understanding and Controlling Charge Transport by External Stimuli and Supramolecular Interactions
超越单分子电导:通过外部刺激和超分子相互作用理解和控制电荷传输
- 批准号:
1507440 - 财政年份:2015
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
CAREER: Electronic and Mechanical Properties of Single Metal-Molecule-Metal Junctions
职业:单金属-分子-金属结的电子和机械性能
- 批准号:
0744185 - 财政年份:2008
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
相似国自然基金
固态锂空气电池新型固有微孔聚合物基固态电解质的设计及传导机制研究
- 批准号:22309060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于天然产物thiasporine A的新型韧皮部传导性杀菌剂的设计合成及构效关系研究
- 批准号:32302417
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钙通道及钙信号的机制分析与理性设计
- 批准号:32371301
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
多酸超结构组装体凝胶电解质的设计合成及其离子传导性能研究
- 批准号:22301085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系铵离子电池低温电解质设计策略及铵离子传导机制研究
- 批准号:52302306
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Carboxyl-alkyl Functionalization for Sustainable Mixed Conduction Polymers: molecular design and mechanistic insights
可持续混合导电聚合物的羧基烷基官能化:分子设计和机理见解
- 批准号:
2408881 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
The role of VSNL1 in human heart rate regulation
VSNL1在人体心率调节中的作用
- 批准号:
10750747 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Functional and histological changes to peripheral innervation following spinal cord stimulation in patients with painful diabetic neuropathy
疼痛性糖尿病神经病变患者脊髓刺激后周围神经支配的功能和组织学变化
- 批准号:
10837475 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Minimally Invasive High Intensity Therapeutic Ultrasound for the Treatment of Obstructive Hypertrophic Cardiomyopathy
微创高强度超声治疗梗阻性肥厚型心肌病
- 批准号:
10603460 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别: