Paired Radical States in Molecular Wires: 1D Topological Insulators and Beyond
分子线中的成对自由基态:一维拓扑绝缘体及其他
基本信息
- 批准号:2241180
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical description:Significant efforts have been invested to develop molecules that can transport charge efficiently at nanometer scale, driven by their important for electronic application, photovoltaics and artificial photosynthesis. However, most molecules that act as conducting wires show an exponential decrease in conductance as their lengths increase, thus limiting their potential applications. The objective of this research project is to develop molecule-based electronic circuits that can conduct charge over long distances using molecular wires with un-paired electrons (radicals). This research will therefore address the challenge of developing long and highly conductive all-organic molecular wires. Further, this project will provide new design strategies to stabilize radicals within molecules; these strategies are likely to have impact in the emerging area of molecular qubits and quantum computing. Beyond advancing applications in nanoscale electronics, this project seeks to excite K-12 children and undergraduate students and attract them in STEM fields, particularly those who are underrepresented minority students and women, which will be pursued through mentoring, providing undergraduate research experiences in a multidisciplinary environment, and influencing the graduate admissions through service programs.Technical description:Molecular wires that conduct following a coherent and off-resonant mechanism exhibit an exponential decrease in conductance with increasing length, making them impractical for applications where highly conductive long wires are required. One way to overcome this limitation is to design and construct one-dimensional topological insulator wires with a pair of radical states. These wires conduct through their radical-based unique boundary (or edge) states, while their interior remains insulating. Such wires could result in a conductance that increases with wire length. This project aims to design, create, measure, and understand electronic transport in these molecular wires by combining theory and experiment. The three specific objectives of the project are: (1) To probe transport in wires with a single radical pair and understand how the electronic coupling between these states and the source and drain electrodes control transport; (2) To create wires with multiple radical pairs and investigate how conductance changes with length; and (3) To design cyclic wires with multiple radical pairs to explore the effects of quantum interference and spin on transport. The educational and outreach efforts of this project also have three broad objectives: (1) To provide undergraduate research opportunities in a multidisciplinary environment; (2) To integrate research into the Applied Physics undergraduate education and (3) To engage K-12 students in laboratory activities and introduce them to nanoscience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:已经投入了重大努力来开发可以在纳米尺度上有效运输电荷的分子,这是由于其对电子应用,光伏和人工光合作用的重要驱动。但是,充当导电的大多数分子显示,随着长度的增加,电导的指数下降,从而限制了其潜在应用。该研究项目的目的是开发基于分子的电子电路,这些电路可以使用带有未育电子的分子电线(自由基)在长距离内进行电荷。因此,这项研究将应对开发长而高的全有机分子电线的挑战。此外,该项目将提供新的设计策略,以稳定分子内的激进分子。这些策略可能会在分子Qubit和量子计算的新兴领域产生影响。除了推进纳米级电子设备的应用外,该项目还试图激发K-12儿童和本科生,并在STEM领域中吸引他们,特别是那些人数不足的少数群体学生和女性,这些学生和女性将通过指导,提供多学科环境中的本科研究经验,并通过多学科的研究和毕业生的培训计划,并在服务中进行了培训。抗呼声机制表现出指数下降,长度的增加,这使得它们对于需要高导电长电线的应用不切实际。克服这一限制的一种方法是使用一对激进状态设计和构建一维拓扑绝缘器线。这些电线通过其基于自由基的独特边界(或边缘)状态进行,而其内部则保持绝缘。这样的电线可能会导致导电随线长的增加。该项目旨在通过结合理论和实验来设计,创建,测量和理解这些分子电线中的电子传输。该项目的三个特定目标是:(1)用单个自由基对探测电线中的传输,并了解这些状态与源和排水电极控制传输之间的电子耦合; (2)创建具有多个自由基对的电线,并研究电导如何随长度变化; (3)设计具有多个自由基对的环状线,以探索量子干扰和旋转对传输的影响。该项目的教育和外展工作也有三个广泛的目标:(1)在多学科环境中提供本科研究机会; (2)将研究整合到应用物理本科教育中,(3)与K-12学生一起参与实验室活动,并将其介绍给纳米科学。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准来通过评估来进行评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Latha Venkataraman其他文献
Latha Venkataraman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Latha Venkataraman', 18)}}的其他基金
CCI Phase I: NSF Center for Chemistry with Electric Fields (ChEF)
CCI 第一阶段:NSF 电场化学中心 (ChEF)
- 批准号:
2023568 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Towards One-Dimensional Single-Molecule Topological Insulators
走向一维单分子拓扑绝缘体
- 批准号:
1807580 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Beyond Single-Molecule Conductance: Understanding and Controlling Charge Transport by External Stimuli and Supramolecular Interactions
超越单分子电导:通过外部刺激和超分子相互作用理解和控制电荷传输
- 批准号:
1507440 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Understanding the Design and Conduction of Materials for Organic Electronics at the Molecular Level
在分子水平上了解有机电子材料的设计和传导
- 批准号:
1206202 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Electronic and Mechanical Properties of Single Metal-Molecule-Metal Junctions
职业:单金属-分子-金属结的电子和机械性能
- 批准号:
0744185 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
基于交通状态场景感知的激进驾驶客观度量与辨识方法
- 批准号:52102417
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于交通状态场景感知的激进驾驶客观度量与辨识方法
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
激进驾驶行为数据驱动的交通安全风险识别、演化及致因研究
- 批准号:52072012
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于巨噬细胞的趋电性利用电刺激进行骨材料植入后的抗感染和促成骨的双重调控机制研究
- 批准号:82002314
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于X射线诱发激进粒子反应机制的短波增反膜表面碳沉积原位、高效、无损清洗方法的研究
- 批准号:61974142
- 批准年份:2019
- 资助金额:59 万元
- 项目类别:面上项目
相似海外基金
Oxidative Lipidomics in Pediatric Traumatic Brain Injury
氧化脂质组学在小儿创伤性脑损伤中的应用
- 批准号:
10844023 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
NIH resubmission Deyu Li - Etheno adductome and repair pathways
NIH 重新提交 Deyu Li - 乙烯加合组和修复途径
- 批准号:
10659931 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Improving Patient-Centered Decision-Making for Stress Urinary Incontinence Treatment in Older Men
改善老年男性压力性尿失禁治疗中以患者为中心的决策
- 批准号:
10729838 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
- 批准号:
2246509 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant