Spectra, gaps, degenerations and cycles
光谱、间隙、简并和循环
基本信息
- 批准号:1201475
- 负责人:
- 金额:$ 24.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PIs will continue their foundational work on Homological Mirror Symmetry (HMS), to develop the structures and theories involved in HMS, and to build on applications of these theories. One notable direction is the theory of higher symplectic structures, which brings out the duality between the ``stacky'' directions and the ``derived'' directions of most moduli problems in algebraic geometry. Exploiting the full depth of these structures will require a careful study of the moduli of various kinds of categorical and higher categorical entities. This is one of the main areas of expertise of all the PIs. Kontsevich introduced one of the main tools, derived schemes. Katzarkov came up with the idea that moduli of LG models and its monodromy can be interpreted as stability conditions and spectra.These activities fit into a more general and global philosophy designed to accompany Geometry in the 21st Century. The study of Geometry in the 20th Century was devoted, in large part and with astounding success, to the classification and parametrization of geometrical objects. However,these objects, of various kinds, were uniformly viewed somehow as ``sets of points''. Along the way, the relationship with categorical structures grew steadily, leading to the many inputs into our program as discussed above. The PIs themselves played a pivotal role in much of the progress that was made at the turn of the century. With PI Kontsevich's introduction of HMS, a subtle change was introduced, in that ``Geometry'' began to be seen within a categorical structure. And the concurrent development of the theory of higher stacks meant that geometric structures were no longer viewed just as ``sets of points'' but rather as objects enclosing a higher structure. This project is highly connected with theoretical physics. As we head into the second decade of the 21st Century, elementary particle physics is on the crux of a profound revolution to be brought about by the new experimental results coming out of the LHC at CERN. These will serve to identify which of the multitude of theoretical possibilities which are currently open, best address quantum field theory at the high energy scale. And for those theories, to tell which are the right parameters. So there will soon be a lot of work to do on the theoretical side, and this will surely require new tools and a new approach. With the relationship between HMS and supersymmetric theories, with the relationship between higher categories and TQFT, with the relationship between partition functions and nonabelian cohomology, the kinds of geometrical objects which we are going to investigate in this project are becoming crucial for understanding these new panoramas in theoretical physics. The project has an educational component - conferences and educating postdocs, This component has been hugely successful in the past and with more funding we plan to bring it to the next level.
PI将继续其在同源镜对称性(HMS)上的基础工作,以发展涉及HMS的结构和理论,并基于这些理论的应用。一个值得注意的方向是较高的符号结构的理论,它提出了``stacky''方向与代数几何形状中大多数模量问题的``stacky''方向之间的双重性。利用这些结构的全部深度将需要仔细研究各种类型和更高分类实体的模量。这是所有PI的专业知识的主要领域之一。 Kontsevich介绍了主要工具之一,即派生的方案。 Katzarkov提出了这样的想法,即LG模型的模量及其单片可以解释为稳定条件和频谱。这些活动适合于21世纪旨在伴随几何形状的更一般和全球哲学。在20世纪的几何学研究很大程度上是对几何物体的分类和参数化的很大程度上的。但是,这些对象各种物体被以某种方式统一视为``点''。在此过程中,与分类结构的关系稳步增长,导致了上面讨论的许多投入。 PI本身在世纪初取得的许多进步中发挥了关键作用。随着Pi Kontsevich对HMS的介绍,引入了微妙的变化,因为“几何形状”开始在类别结构中看到。高等堆栈理论的并发发展意味着几何结构不再被视为``点''',而是作为包含更高结构的对象。该项目与理论物理学高度联系。当我们进入21世纪第二个十年时,基本粒子物理学正是由CERN的LHC出现的新实验结果带来的深刻革命的症结所在。这些将有助于确定当前开放的多种理论可能性,最佳的量子场理论在高能量尺度上。对于这些理论,要确定哪个是正确的参数。因此,很快就会在理论方面做很多工作要做,这肯定需要新的工具和新的方法。 与HMS与超对称理论之间的关系以及更高类别与TQFT之间的关系以及分区函数与非亚伯群岛的关系之间的关系,我们将在该项目中要研究的几何对象类型对于理解理论物理学中的这些新的全景。该项目有一个教育组成部分 - 会议和教育博士后,该组成部分在过去取得了巨大成功,并有更多的资金将其提升到一个新的水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ludmil Katzarkov其他文献
Ludmil Katzarkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ludmil Katzarkov', 18)}}的其他基金
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 24.3万 - 项目类别:
Continuing Grant
Conference on Homological Mirror Symmetry
同调镜像对称会议
- 批准号:
2001614 - 财政年份:2020
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Categorical Kahler Geometry and Applications
分类卡勒几何及其应用
- 批准号:
2001319 - 财政年份:2020
- 资助金额:
$ 24.3万 - 项目类别:
Continuing Grant
Homological Mirror Symmetry Conference Miami 2015
2015 年迈阿密同调镜像对称会议
- 批准号:
1502578 - 财政年份:2015
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Homological Mirror Symmetry and Categorical Linear Systems
同调镜像对称和分类线性系统
- 批准号:
1502162 - 财政年份:2015
- 资助金额:
$ 24.3万 - 项目类别:
Continuing Grant
Homological Mirror Symmetry MIAMI, Jan 27- Feb 1, 2014
同调镜像对称迈阿密,2014 年 1 月 27 日至 2 月 1 日
- 批准号:
1404779 - 财政年份:2014
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Homological Mirror Symmetry Conference Miami
迈阿密同调镜像对称会议
- 批准号:
1303069 - 财政年份:2013
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1265230 - 财政年份:2013
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Pan American Advanced Studies Institute on Wall Crossing, Stability Hodge Structures and TQFT- Natal, Brazil
泛美跨墙、稳定性 Hodge 结构和 TQFT 高级研究所 - 巴西纳塔尔
- 批准号:
1242272 - 财政年份:2012
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
Geometry and Physics Miami - Brazil - Mexico - Conference
几何与物理迈阿密 - 巴西 - 墨西哥 - 会议
- 批准号:
1201544 - 财政年份:2012
- 资助金额:
$ 24.3万 - 项目类别:
Standard Grant
相似国自然基金
利用航空重力反演格陵兰近海船测海深数据空白区域的海底地形
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
钒渣空白氧化焙烧-铵浸选择性提钒新过程应用基础研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
干细胞体外扩增“空白平台”的构建与高效回收技术的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
带有奇异噪声的随机偏微分方程
- 批准号:11671035
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
白频谱数据库驱动的南海海域宽带通信技术研究
- 批准号:61561018
- 批准年份:2015
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
相似海外基金
奄美沖縄「空白の1万年」問題解明の為の年代高精度化に資する新手法開発と展開
开发和部署一种新方法,有助于提高年代精度,解决冲绳奄美“一万年差距”问题
- 批准号:
24H00094 - 财政年份:2024
- 资助金额:
$ 24.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
BRIDGEGAP - Bridging the Gaps in Evidence, Regulation and Impact of Anticorruption Policies
BRIDGEGAP - 缩小反腐败政策的证据、监管和影响方面的差距
- 批准号:
10110711 - 财政年份:2024
- 资助金额:
$ 24.3万 - 项目类别:
EU-Funded
Global Governing Gaps and Accountability Traps for Solar Energy and Storage
太阳能和存储的全球治理差距和问责陷阱
- 批准号:
DP230103043 - 财政年份:2024
- 资助金额:
$ 24.3万 - 项目类别:
Discovery Projects
船上係留気球による南半球データ空白域での夜光雲観測ー夜光雲全球動態の解明
利用船上系泊气球观测南半球数据缺口中的夜光云——阐明夜光云的全球动态
- 批准号:
23K22560 - 财政年份:2024
- 资助金额:
$ 24.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
南極長期周回気球による暗黒物質探索実験GAPSの粒子識別性能向上の研究
提高南极长期轨道气球暗物质搜索实验GAPS粒子识别性能的研究
- 批准号:
24K17079 - 财政年份:2024
- 资助金额:
$ 24.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists