IDR: Molecular engineering of thermal interfaces
IDR:热界面的分子工程
基本信息
- 批准号:1134311
- 负责人:
- 金额:$ 55.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IDR: Molecular Engineering of Thermal Interfaces 1134311Avik Ghosh, Patrick E. Hopkins & Lloyd R. Harriott Engineering the conduction of heat in solid materials is essential for a wide array of applications, ranging from thermal management of electronics, to power generation, to information technology. Many of these modern systems include materials and structures with characteristic length scales on the order of tens to hundreds of nanometers. At these length scales, the major thermal resistances arise at the interfaces between two materials, leading to thermal properties of nanosystems that are strongly dictated by these solid interfaces. Therefore, it is of utmost importance to develop mechanisms of controlling and tuning the thermal transport across interfaces to be able to accurately manage the thermal properties of nanosystems. To achieve this, this project will explore thermal transport between two solid layers, controlled by properties of organic molecules grown at their interface. Through the interplay between the wide-band, spatially localized molecular vibrons and the narrow-band, spatially delocalized substrate phonons, the project will aim for the systematic and targeted engineering of the composition, morphology and phonon bandstructures of material interfaces at the molecular scale in order to achieve a high degree of tunability of the interfacial thermal conductance. A combined and closely coupled theoretical and experimental study will be launched exploring various classes of self-assembled monolayers (SAMs) of organic molecules as thermal interfacial materials, as a function of variables such as the SAM and substrate quality and material, utilizing self-assembly and most importantly a rich variety of functional chemistry. The thermal transport across the wide array of SAM-based interfaces will be measured with time domain thermoreflectance. The experimental results will be strongly coupled with ab initio modeling efforts utilizing Nonequilibrium Green's Functions formalisms. The science discovered in this project will also be widely applicable to thermal engineering of generic metal and semiconductor interfacial systems.The intellectual merit of this proposed work is in the development of a new understanding of nanoscale interfacial thermal properties. This will prove critical for the atomistic control of heat flow. Through the close synergy between theory and experiment, the study will enhance the understanding of heat flow and dissipation at their most fundamental, microscopic limits, combining atomistic concepts behind molecular heat flow with solid state concepts of bulk heat flow. It will bridge disciplines, materials, and ultimately the boundary between fundamental science and technological applications. Accurate, well benchmarked simulations will address the critical role of band-alignment and chemistry at the solid-molecular interface. Experiments will focus on fabrication of well-defined SAM-based interfacial structures, modifying them through molecular chemistry, characterization and measurement of thermal boundary resistances with a goal towards creating high quality tunable thermal boundaries. The broader impacts of this project include both engineering relevance and education/outreach components. The knowledge gained will introduce a new concept in nanoscale science: thermal interface control and engineering via molecular chemistry. Nanoscale thermal management and control will bring about disruptive changes to science, technology and economics, ranging from superior quality and tailor-made thermal coatings and thermoelectric refrigerators, to better heat management in the multi-billion dollar semiconductor industry. Educational and outreach activities will involve creation of a nano-curriculum at UVa, tutorial creation on the thermalHUB, integration of research and education through thermal transport labs in courses taught by the PIs, conference organization of session on molecular heat transfer with undergraduate involvement, engaging minority undergraduate students for summer projects through the REU program and training middle school teachers for curriculum development utilizing UVA's Center for Diversity in Engineering.
IDR:热界面分子工程 1134311Avik Ghosh、Patrick E. Hopkins 和 Lloyd R. Harriott 工程固体材料中的热传导对于从电子热管理到发电再到信息技术的各种应用至关重要。 许多现代系统都包含特征长度为数十至数百纳米量级的材料和结构。 在这些长度尺度上,主要的热阻出现在两种材料之间的界面处,导致纳米系统的热特性受到这些固体界面的强烈决定。 因此,开发控制和调节跨界面热传输的机制,以便能够准确管理纳米系统的热性能至关重要。 为了实现这一目标,该项目将探索两个固体层之间的热传输,由其界面处生长的有机分子的特性控制。 通过宽带、空间局域分子振动与窄带、空间离域基底声子之间的相互作用,该项目旨在对分子尺度上材料界面的组成、形态和声子能带结构进行系统和有针对性的工程设计。以实现界面热导的高度可调。将启动一项紧密结合的理论和实验研究,探索各种类型的有机分子自组装单层 (SAM) 作为热界面材料,作为 SAM 和基板质量和材料等变量的函数,利用自组装最重要的是丰富多样的功能化学。 跨各种基于 SAM 的接口的热传输将通过时域热反射进行测量。 实验结果将与利用非平衡格林函数形式主义的从头开始建模工作紧密结合。 该项目中发现的科学也将广泛应用于通用金属和半导体界面系统的热工程。这项工作的智力价值在于发展了对纳米级界面热性质的新理解。 这对于热流的原子控制至关重要。通过理论与实验之间的密切协同,该研究将结合分子热流背后的原子概念与体热流的固态概念,增强对热流和耗散在最基本、微观极限下的理解。它将弥合学科、材料,并最终弥合基础科学和技术应用之间的界限。 准确、基准良好的模拟将解决能带排列和化学在固体分子界面的关键作用。 实验将侧重于制造基于 SAM 的明确界面结构,并通过分子化学、热边界电阻的表征和测量对其进行修改,目标是创建高质量的可调节热边界。该项目更广泛的影响包括工程相关性和教育/推广部分。 所获得的知识将引入纳米科学的新概念:通过分子化学进行热界面控制和工程。 纳米级的热管理和控制将为科学、技术和经济带来颠覆性的变化,从卓越的品质和定制的热涂层和热电冰箱,到价值数十亿美元的半导体行业中更好的热管理。教育和外展活动将包括在弗吉尼亚大学创建纳米课程、创建ThermalHUB教程、通过热传输实验室将研究和教育整合到PI教授的课程中、组织本科生参与的分子传热会议、参与通过 REU 项目为少数族裔本科生开展暑期项目,并利用 UVA 工程多样性中心培训中学教师进行课程开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avik Ghosh其他文献
Performance Analysis of Genetic Algorithm as a Stochastic Optimization Tool in Engineering Design Problems
遗传算法作为随机优化工具在工程设计问题中的性能分析
- DOI:
10.1117/12.886383 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
R. Basak;A. Sanyal;Arabinda Das;Avik Ghosh;A. Poddar - 通讯作者:
A. Poddar
A Comparative Evaluation of Mandibular Intercanine Arch Width Changes in Class I and Class II Division 1 Malocclusions Treated with Extraction— An Occlusogram Study
I 类和 II 类 1 区错牙合拔牙治疗下颌尖牙间牙弓宽度变化的比较评估——咬合图研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Avik Ghosh;P. Mehrotra;S. Kapoor;Sonahita Agarwal;Geeta Verma - 通讯作者:
Geeta Verma
Theoretical exploration of H2X (X = O, S, Se) and HY (Y = F, Cl, Br) assisted H2-release from ammonia-borane and related compounds: mechanistic insights from theoretical viewpoint
H2X(X = O、S、Se)和 HY(Y = F、Cl、Br)辅助氨硼烷及相关化合物释放 H2 的理论探索:从理论角度的机理见解
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Avik Ghosh;Tamalika Ash;Tanay Debnath;Abhijit K. Das - 通讯作者:
Abhijit K. Das
Energetics and Spectroscopic Properties of Low‐lying CaC
6
H
2
Isomers: An Astrochemical Perspective
低位 CaC 6 H 2 异构体的能量学和光谱性质:天体化学视角
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.1
- 作者:
Avik Ghosh;Soumadip Banerjee;S. Sarkar;Tanay Debnath;Tamalika Ash;R. S. Roy;Abhijit K. Das - 通讯作者:
Abhijit K. Das
Hybrid Machine Learning Forecasting for Online MPC of Work Place Electric Vehicle Charging
工作场所电动汽车充电在线 MPC 的混合机器学习预测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.6
- 作者:
Graham McClone;Avik Ghosh;Adil Khurram;B. Washom;J. Kleissl - 通讯作者:
J. Kleissl
Avik Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avik Ghosh', 18)}}的其他基金
Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
- 批准号:
2118676 - 财政年份:2021
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Phase II IUCRC at University of Virginia: Center for Multi-functional Integrated System Technology (MIST)
弗吉尼亚大学 IUCRC 第二阶段:多功能集成系统技术中心 (MIST)
- 批准号:
1939012 - 财政年份:2020
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Band Engineering for High Gain Digital III-V Avalanche Photodiodes
高增益数字 III-V 雪崩光电二极管的频带工程
- 批准号:
1936016 - 财政年份:2019
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Phase I Site Addition: I/UCRC for Multi-Functional Integrated System Technology (MIST) Center
第一阶段扩建:I/UCRC 多功能集成系统技术 (MIST) 中心
- 批准号:
1738752 - 财政年份:2017
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Next Generation Nanomaterial and Device Engineering (NGeNE)
合作研究:规划资助:I/UCRC 下一代纳米材料和器件工程 (NGeNE)
- 批准号:
1464641 - 财政年份:2015
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Atomic scale to circuit modeling of emerging nanoelectronic devices and adapting them to SPICE simulation package
SHF:中:协作研究:新兴纳米电子器件的原子尺度电路建模并使它们适应 SPICE 仿真包
- 批准号:
1514219 - 财政年份:2015
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: First-Principles Based Design of Spintronic Materials and Devices
DMREF:协作研究:基于第一原理的自旋电子材料和器件设计
- 批准号:
1235230 - 财政年份:2012
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
CAREER-QMHP: Understanding Electron dynamics at the nano-micro interface
CAREER-QMHP:了解纳米-微米界面的电子动力学
- 批准号:
0748009 - 财政年份:2008
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
相似国自然基金
基于柱芳烃超分子主客体识别体系的电解液工程设计及离子传输机制研究
- 批准号:52303283
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分子工程的高强度生物基水凝胶及双网络抗渗漏机理研究
- 批准号:12304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
界面分子工程构筑高效稳定的DJ-2D/3D杂化钙钛矿太阳能电池
- 批准号:52363026
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
面向苛刻环境Ga2O3场效应晶体管的自组装单分子层界面工程
- 批准号:62304167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于过氧化氢隧道工程的类固醇羟化P450过加氧酶的理性设计与分子机制研究
- 批准号:32371311
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
MELISA: Molecular Engineering of Contact Interfaces for Long-Term Stable Perovskite Photovoltaics
MELISA:长期稳定钙钛矿光伏接触界面的分子工程
- 批准号:
EP/Z000971/1 - 财政年份:2024
- 资助金额:
$ 55.9万 - 项目类别:
Fellowship
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
- 批准号:
10679898 - 财政年份:2024
- 资助金额:
$ 55.9万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 55.9万 - 项目类别:
局所場における光テラヘルツ波変換モデルリングと半導体分析応用
局域场光学太赫兹波转换建模及半导体分析应用
- 批准号:
23H00184 - 财政年份:2023
- 资助金额:
$ 55.9万 - 项目类别:
Grant-in-Aid for Scientific Research (A)