IDR: Molecular engineering of thermal interfaces
IDR:热界面的分子工程
基本信息
- 批准号:1134311
- 负责人:
- 金额:$ 55.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IDR: Molecular Engineering of Thermal Interfaces 1134311Avik Ghosh, Patrick E. Hopkins & Lloyd R. Harriott Engineering the conduction of heat in solid materials is essential for a wide array of applications, ranging from thermal management of electronics, to power generation, to information technology. Many of these modern systems include materials and structures with characteristic length scales on the order of tens to hundreds of nanometers. At these length scales, the major thermal resistances arise at the interfaces between two materials, leading to thermal properties of nanosystems that are strongly dictated by these solid interfaces. Therefore, it is of utmost importance to develop mechanisms of controlling and tuning the thermal transport across interfaces to be able to accurately manage the thermal properties of nanosystems. To achieve this, this project will explore thermal transport between two solid layers, controlled by properties of organic molecules grown at their interface. Through the interplay between the wide-band, spatially localized molecular vibrons and the narrow-band, spatially delocalized substrate phonons, the project will aim for the systematic and targeted engineering of the composition, morphology and phonon bandstructures of material interfaces at the molecular scale in order to achieve a high degree of tunability of the interfacial thermal conductance. A combined and closely coupled theoretical and experimental study will be launched exploring various classes of self-assembled monolayers (SAMs) of organic molecules as thermal interfacial materials, as a function of variables such as the SAM and substrate quality and material, utilizing self-assembly and most importantly a rich variety of functional chemistry. The thermal transport across the wide array of SAM-based interfaces will be measured with time domain thermoreflectance. The experimental results will be strongly coupled with ab initio modeling efforts utilizing Nonequilibrium Green's Functions formalisms. The science discovered in this project will also be widely applicable to thermal engineering of generic metal and semiconductor interfacial systems.The intellectual merit of this proposed work is in the development of a new understanding of nanoscale interfacial thermal properties. This will prove critical for the atomistic control of heat flow. Through the close synergy between theory and experiment, the study will enhance the understanding of heat flow and dissipation at their most fundamental, microscopic limits, combining atomistic concepts behind molecular heat flow with solid state concepts of bulk heat flow. It will bridge disciplines, materials, and ultimately the boundary between fundamental science and technological applications. Accurate, well benchmarked simulations will address the critical role of band-alignment and chemistry at the solid-molecular interface. Experiments will focus on fabrication of well-defined SAM-based interfacial structures, modifying them through molecular chemistry, characterization and measurement of thermal boundary resistances with a goal towards creating high quality tunable thermal boundaries. The broader impacts of this project include both engineering relevance and education/outreach components. The knowledge gained will introduce a new concept in nanoscale science: thermal interface control and engineering via molecular chemistry. Nanoscale thermal management and control will bring about disruptive changes to science, technology and economics, ranging from superior quality and tailor-made thermal coatings and thermoelectric refrigerators, to better heat management in the multi-billion dollar semiconductor industry. Educational and outreach activities will involve creation of a nano-curriculum at UVa, tutorial creation on the thermalHUB, integration of research and education through thermal transport labs in courses taught by the PIs, conference organization of session on molecular heat transfer with undergraduate involvement, engaging minority undergraduate students for summer projects through the REU program and training middle school teachers for curriculum development utilizing UVA's Center for Diversity in Engineering.
IDR:热接口的分子工程1134311AVIK GHOSH,PATRICK E. HOPKINS和LLOYD R. HARRIOTT ENGINES UNGINES UNGINES固体材料中的热传导对于从电子管理的热管理到电力,到电力生成,到信息技术至关重要。 这些现代系统中的许多都包括在数十个纳米的范围内具有特征长度尺度的材料和结构。 在这些长度尺度上,主要的热电阻在两种材料之间的界面上产生,从而导致纳米系统的热性能由这些固体接口强烈决定。 因此,开发控制和调整跨接口的热传输的机制至关重要,以便能够准确管理纳米系统的热性能。 为了实现这一目标,该项目将探索两个固体层之间的热传输,并受到其界面上生长的有机分子的特性控制。 通过宽频段,空间局部的分子颤音与狭窄的频段,空间Delocalized的底物声子之间的相互作用,该项目将旨在以分子尺度的材料界面的组成,形态和声音界面的系统和有针对性的工程,以实现高度可调性的互动能力。将启动一项结合且紧密耦合的理论和实验研究,探索有机分子作为热界面材料的各种自组装单层(SAM),这是SAM和底物质量和材料等变量的函数,这些变量利用了自组装,以及最重要的是多种功能功能化学的化学化学。 跨SAM基界面的热传输将通过时域的热反射率进行测量。 实验结果将与从头算建模的努力强烈结合,利用Green的非平衡功能形式主义。 该项目中发现的科学也将广泛适用于通用金属和半导体界面系统的热工程。这项提出的工作的智力优点是对纳米级界面热特性的新了解。 这将证明对热流的原子控制至关重要。通过理论和实验之间的紧密协同作用,该研究将在其最基本的微观极限上增强对热流和耗散的理解,将分子热流动背后的原子概念与固态热量概念相结合。它将弥合学科,材料,并最终在基本科学与技术应用之间的边界。 精确,基准的模拟将解决固体分子界面上频段和化学的关键作用。 实验将集中于制造明确定义的SAM界面结构,通过分子化学,表征和测量热边界电阻的特征和测量,以创建高质量的可调热边界。该项目的更广泛影响包括工程相关性和教育/外展组件。 获得的知识将引入纳米级科学的新概念:通过分子化学的热接口控制和工程。 纳米级热管理和控制将对科学,技术和经济学带来破坏性的变化,从卓越的质量和量身定制的热涂层以及热电冰箱,再到数十亿美元半导体行业的热量管理。教育和宣传活动将涉及在UVA上创建纳米校,在热力家庭上创建教程创建,在PIS教授的课程中,通过热运输实验室整合研究和教育,分子会议的课程,分子组织会议组织,分子热传播与少数群体的培训,以培训少数群体,以培训少数群体,以培训REU的培训,以培训REU的培训,并培训REU的培训。工程多样性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avik Ghosh其他文献
Performance Analysis of Genetic Algorithm as a Stochastic Optimization Tool in Engineering Design Problems
遗传算法作为随机优化工具在工程设计问题中的性能分析
- DOI:
10.1117/12.886383 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
R. Basak;A. Sanyal;Arabinda Das;Avik Ghosh;A. Poddar - 通讯作者:
A. Poddar
Energetics and Spectroscopic Properties of Low‐lying CaC
6
H
2
Isomers: An Astrochemical Perspective
低位 CaC 6 H 2 异构体的能量学和光谱性质:天体化学视角
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.1
- 作者:
Avik Ghosh;Soumadip Banerjee;S. Sarkar;Tanay Debnath;Tamalika Ash;R. S. Roy;Abhijit K. Das - 通讯作者:
Abhijit K. Das
Hybrid Machine Learning Forecasting for Online MPC of Work Place Electric Vehicle Charging
工作场所电动汽车充电在线 MPC 的混合机器学习预测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.6
- 作者:
Graham McClone;Avik Ghosh;Adil Khurram;B. Washom;J. Kleissl - 通讯作者:
J. Kleissl
A Comparative Evaluation of Mandibular Intercanine Arch Width Changes in Class I and Class II Division 1 Malocclusions Treated with Extraction— An Occlusogram Study
I 类和 II 类 1 区错牙合拔牙治疗下颌尖牙间牙弓宽度变化的比较评估——咬合图研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Avik Ghosh;P. Mehrotra;S. Kapoor;Sonahita Agarwal;Geeta Verma - 通讯作者:
Geeta Verma
Theoretical exploration of H2X (X = O, S, Se) and HY (Y = F, Cl, Br) assisted H2-release from ammonia-borane and related compounds: mechanistic insights from theoretical viewpoint
H2X(X = O、S、Se)和 HY(Y = F、Cl、Br)辅助氨硼烷及相关化合物释放 H2 的理论探索:从理论角度的机理见解
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Avik Ghosh;Tamalika Ash;Tanay Debnath;Abhijit K. Das - 通讯作者:
Abhijit K. Das
Avik Ghosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avik Ghosh', 18)}}的其他基金
Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
- 批准号:
2118676 - 财政年份:2021
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Phase II IUCRC at University of Virginia: Center for Multi-functional Integrated System Technology (MIST)
弗吉尼亚大学 IUCRC 第二阶段:多功能集成系统技术中心 (MIST)
- 批准号:
1939012 - 财政年份:2020
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Band Engineering for High Gain Digital III-V Avalanche Photodiodes
高增益数字 III-V 雪崩光电二极管的频带工程
- 批准号:
1936016 - 财政年份:2019
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Phase I Site Addition: I/UCRC for Multi-Functional Integrated System Technology (MIST) Center
第一阶段扩建:I/UCRC 多功能集成系统技术 (MIST) 中心
- 批准号:
1738752 - 财政年份:2017
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Next Generation Nanomaterial and Device Engineering (NGeNE)
合作研究:规划资助:I/UCRC 下一代纳米材料和器件工程 (NGeNE)
- 批准号:
1464641 - 财政年份:2015
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Atomic scale to circuit modeling of emerging nanoelectronic devices and adapting them to SPICE simulation package
SHF:中:协作研究:新兴纳米电子器件的原子尺度电路建模并使它们适应 SPICE 仿真包
- 批准号:
1514219 - 财政年份:2015
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: First-Principles Based Design of Spintronic Materials and Devices
DMREF:协作研究:基于第一原理的自旋电子材料和器件设计
- 批准号:
1235230 - 财政年份:2012
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
CAREER-QMHP: Understanding Electron dynamics at the nano-micro interface
CAREER-QMHP:了解纳米-微米界面的电子动力学
- 批准号:
0748009 - 财政年份:2008
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
相似国自然基金
界面分子工程构筑高效稳定的DJ-2D/3D杂化钙钛矿太阳能电池
- 批准号:52363026
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基因编辑工程化干细胞治疗心肌梗死的分子影像研究
- 批准号:82302268
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于过氧化氢隧道工程的类固醇羟化P450过加氧酶的理性设计与分子机制研究
- 批准号:32371311
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ε-聚赖氨酸转运分子机理与代谢工程研究
- 批准号:32370094
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分子修饰耦合表面结构工程高效助力酸性CO2电还原
- 批准号:22302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
MELISA: Molecular Engineering of Contact Interfaces for Long-Term Stable Perovskite Photovoltaics
MELISA:长期稳定钙钛矿光伏接触界面的分子工程
- 批准号:
EP/Z000971/1 - 财政年份:2024
- 资助金额:
$ 55.9万 - 项目类别:
Fellowship
Investigating FGF Signaling Dynamics in migrating cells
研究迁移细胞中的 FGF 信号动力学
- 批准号:
10679898 - 财政年份:2024
- 资助金额:
$ 55.9万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 55.9万 - 项目类别:
MRSEC: UW Molecular Engineering Materials Center
MRSEC:华盛顿大学分子工程材料中心
- 批准号:
2308979 - 财政年份:2023
- 资助金额:
$ 55.9万 - 项目类别:
Cooperative Agreement
局所場における光テラヘルツ波変換モデルリングと半導体分析応用
局域场光学太赫兹波转换建模及半导体分析应用
- 批准号:
23H00184 - 财政年份:2023
- 资助金额:
$ 55.9万 - 项目类别:
Grant-in-Aid for Scientific Research (A)