JILA PFC: Bridging theGap from Few-Body to Many-Body through Quantum Control
JILA PFC:通过量子控制弥合从少体到多体的差距
基本信息
- 批准号:1125844
- 负责人:
- 金额:$ 1685万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary theme of the JILA PFC is to address the challenge of bridging the gap from few-body physics to many-body physics through quantum control. The central scientific objective is to extend the remarkable level of control and understanding that physicists have for few-body systems to many-body quantum systems. Quantum systems made up of many particles and their interactions play an essential role in much of physics, including condensed matter physics, material physics, nuclear physics, high-energy particle physics, astrophysics, biophysics, and chemical physics. The JILA PFC will focus upon the challenge of controlling and understanding multi-particle quantum systems using the tools and ideas of atomic, molecular, and optical (AMO) physics, which, ironically, is a field of physics for which many-body physics has not traditionally been emphasized. AMO physics is in the midst of a revolution, evidenced, for example, by the remarkable accomplishments in recent years of experiments on ultracold gases, ultrafast laser technology, and ultraprecise spectroscopy. This revolution affords a new approach for confronting the behavior of complex multi-particle systems using control at the quantum level. In the period 2011- 2016, the JILA PFC investigators will apply the tools of modern AMO physics to tackle the challenge of bridging the gap from few-body to many-body quantum physics from both sides, using cutting-edge techniques to study few-body problems beyond current understanding and many-particle ensembles in regimes beyond the limits of a mean-field description. Specific questions to be addressed are (1) What new insights can one bring to quantum many-body physics using ultracold atom and molecule gases as model systems? (2) Can one extend AMO's measurement and control techniques to create new types of many-body systems using coherent light-matter coupling? (3) Can one understand and address, in the few- to many-body problem, the physics of molecule formation and, more generally, chemical reactions by applying cutting-edge technologies to control and probe simple molecular systems? (4) What are potential high impact research directions that are closely tied to this work? The research will take place at JILA, a multidisciplinary research institute located on the University of Colorado campus in Boulder, and builds upon the extensive results achieved under the present PFC funding. Significant results in nanokelvin molecular physics, in non-classical behavior of nano-oscillators and microwave fields, and in various probes of solid and liquid dynamics across timescales that span twelve orders of magnitude, all set the stage for rapid future progress in four major activities:.Major Activity 1: Building complex matter from the ground up.Work in this area will explore the rich phenomena arising in novel quantum many-body systems that are assembled from ultracold atoms and molecules. This major activity, which has strong connections to condensed matter physics, will include research in dipolar molecular quantum gases and strongly interacting atomic quantum gases. Specific research goals include exploring the boundary between gaseous and liquid behavior in gases of strongly interacting particles, and realizing novel states of quantum matter using the long-range and anisotropic interactions between ultracold polar molecules.Major Activity 2: Engineering quantum many-body systems using light-matter coupling.This activity will extend quantum control to increasingly complex systems by exploiting coherent light matter interactions. Projects will explore collective light emission from cold atoms, the quantum motion of nano-mechanical oscillators, and light-induced coherence in material systems. An example project is an ambitious effort to map non-classical photon states in the microwave onto corresponding states in optical modes and vice versa, using a nanomechanical "diving board" as the coupling medium.Major Activity 3: Confronting molecular transformation.At the most basic level, reactions proceed via the interaction between electrons and the coupling between electronic and nuclear motion. JILA PFC investigators will explore the physics of reactions at this fundamental level, with the goal of understanding, and learning to control, energy flow in small systems such as triatomic and tetratomic molecules. They will focus on three projects: studying cold and ultracold reactive molecular scattering, probing time-resolved nuclear and electronic dynamics, and developing coherent UV to IR molecular spectroscopy.Major Activity 4: Exploring high impact synergistic research directions.An essential aspect of JILA's center philosophy is that one should be alert to opportunities to "export" interesting ideas and technologies to activities outside the central focus of the center, and to import these as well. JILA will explore a few of these opportunities, investing a small fraction of center resources in facilitating this trade in ideas and technology.The major activities share a common focus, and therefore have substantial intellectual and scientific overlap, and, if, anything, still stronger technological overlap. Prior experience has shown that the extraordinarily challenging goals envisioned for the JILA PFC are best tackled with fluid collaborations that can draw on a range of capabilities, such as laser frequency combs, ultracold atoms, advanced VUV sources, quantum and ultrafast optics, the sensitive detection methods of chemical physics, and theoretical methods, both computational and analytic. This diversity of expertise cannot readily be synthesized in an individual investigator's group. In addition, the JILA PFC relies on and continuously upgrades a shared technical infrastructure including a world-class machine shop, as well as electronics and computational support, and engages in a collective program of education and outreach efforts.The JILA program will have many different broader impacts. It will enhance the nation's technical infrastructure by developing many new laser-based tools and techniques, and by producing many graduates who are highly trained not only in AMO physics but also in technical communication and teaching skills. It will connect with the science community around the world and foster field-wide frontier research through organization and hosting of topical workshops, through a short-term and long-term JILA visitor program, as well as through the many undergraduate students, graduate students, and postdoctoral researchers who participate in the collaborative and interdisciplinary research at JILA. As discussed above, the proposed work connects to many different areas of physics, including applied areas such as materials physics, biophysics, and nanotechnology. Extending understanding and quantum control from few- to many-body systems will certainly impact many applications, such as photosynthesis, design of catalytic materials, and new techniques in renewable energy. The proposed program will also attract more students into science, particularly from under-represented groups, through a vigorous undergraduate research program and a predominantly minority-serving middle-school after-school enrichment program. It will contribute to general science interest and literacy through a variety of programs that include the very popular "Wizards" show for school children, the University of Colorado Saturday Physics public talks, and suitably trained graduate students and postdoctoral researchers who present science topics to Colorado middle-school and high-school students. It will also research, develop, and broadly disseminate better ways to teach AMO science to all students, better ways to teach AMO science to all students, particularly through on-line interactive simulation.
Jila PFC的主要主题是解决通过量子控制将差距从几体物理学到多体物理学的挑战。中心科学目标是将物理学家对少数体系统具有的显着控制和理解扩展到多体量子系统。量子系统由许多颗粒组成及其相互作用在许多物理学中起着至关重要的作用,包括凝结物理学,材料物理,核物理学,高能量颗粒物理学,天体物理学,生物物理学和化学物理学。 Jila PFC将使用原子,分子和光学(AMO)物理学的工具和思想来控制和理解多粒子量子系统的挑战,这具有讽刺意味的是,这是一个物理领域,传统上并未强调多体物理学的领域。 AMO物理学正处于一场革命之中,例如,在近年来对超冷气体,超快激光技术和超脑光谱的实验实验中的显着成就证明了这一点。这场革命为使用量子级别的控制提供了一种新的方法,可以与复杂多粒子系统的行为面对面。在2011年至2016年期间,JILA PFC调查人员将使用现代AMO物理学的工具来应对从双方弥合从几体到多体量子物理学的差异,使用尖端的技术来研究超出当前理解的少数物体问题,超出了当前的理解和在平均网络描述的范围之外的范围。要解决的具体问题是(1)使用Ultracold Atom和分子气作为模型系统,可以将哪些新见解带入量子多体物理学? (2)一个人可以扩展AMO的测量和控制技术,以使用连贯的光耦合创建新型的多体系统类型? (3)一个人可以通过应用尖端技术来控制和探测简单的分子系统来理解和解决分子形成的物理以及化学反应的理解和解决吗? (4)与这项工作紧密相关的潜在高影响研究方向是什么? 这项研究将在位于博尔德科罗拉多大学校园的多学科研究所Jila举行,并建立在当前PFC资金下取得的广泛成果的基础上。纳米素分子物理学,纳米振荡器和微波领域的非古典行为以及在跨时标的固体和液体动力学的各种探针中,跨越十二个数量级的固体和液体动力学的各种探针的重要结果,所有这些都为四个主要活动中的快速发展奠定了阶段。来自超低原子和分子。这种主要活性与凝结物理物质有密切的联系,将包括对偶极分子量子气和强烈相互作用的原子量子气的研究。具体的研究目标包括探索强烈相互作用颗粒的气体和液体行为之间的边界,以及使用超电量极性分子之间的远距离和各向异性相互作用实现量子物质的新状态。MAJOR活动2:使用光量量的量子量量量子控制量量量强度,量子系统的工程量子量子多体量系统将扩展到量子相互作用。项目将探索来自冷原子的集体光发射,纳米机械振荡器的量子运动以及材料系统中的光引起的连贯性。一个示例项目是一种雄心勃勃的努力,将微波炉中的非古典光子状态映射到光学模式中的相应状态,反之亦然,使用纳米力学的“潜水板”作为耦合培养基。Major活动3:面对分子转换。在最基本的水平上,在最基本的水平上,通过电子和coupling和coupling和coupling of electrics之间的反应进行反应。 JILA PFC研究人员将在此基本层面探索反应物理学,以理解和学习控制小型系统(例如Triatomic和tetratoComic分子)中的能量流。他们将重点关注三个项目:研究冷和超声反应性分子散射,探测时间分辨的核和电子动力学,并向IR分子光谱镜头开发一致的紫外线。4:探索高影响力的协同研究方向。吉拉哲学的一项重要方面应及时提高了“有趣的活动”和“在这些有趣的概念中”的构想和技术的集中,这些概念是在这些中心的焦点和技术的集中。吉拉(Jila)将探索其中的一些机会,投入一小部分中心资源来促进这一贸易的思想和技术。主要活动共有一个共同的重点,因此具有实质性的智力和科学重叠,如果有的话,任何东西仍然更强大。先前的经验表明,对于JILA PFC所设想的极具挑战性的目标,最好通过流畅的协作来解决,这些协作可以利用一系列功能,例如激光频率梳,超电脑原子,高级VUV源,量子和超级FUSTUM和Ultrafast Optics,化学物理学和理性方法的敏感检测方法,以及计算性的和分析。这种专业知识的多样性无法在个人调查员小组中综合。此外,JILA PFC还依靠并不断升级共享的技术基础设施,包括世界一流的机械车间,电子和计算支持,并参与了一项集体的教育和推广工作计划。JILA计划将产生许多不同的广泛影响。它将通过开发许多新的基于激光的工具和技术来增强美国的技术基础设施,并通过生产许多毕业生,这些毕业生不仅在AMO物理学领域,而且在技术沟通和教学技能方面受过良好的培训。它将通过组织和主持局部研讨会,通过短期和长期的JILA访客计划以及通过许多本科生,研究生和博士后研究人员,通过组织和长期的JILA访客计划来与世界各地的科学界进行联系,并举办局部研讨会。如上所述,拟议的工作连接到许多不同的物理领域,包括材料物理,生物物理学和纳米技术等应用领域。将理解和量子控制从少数到多体系统肯定会影响许多应用,例如光合作用,催化材料的设计以及可再生能源的新技术。 拟议的计划还将通过剧烈的本科研究计划和主要少数职业的中学后课程丰富计划来吸引更多的学生进入科学,尤其是来自代表性不足的群体的科学。它将通过各种课程为一般科学的兴趣和识字做出贡献,这些计划包括非常受欢迎的“巫师”节目,科罗拉多大学星期六物理学公众会谈以及适当培训的研究生和博士后研究人员,他们向科罗拉多州中学和高中生介绍科学主题。它还将研究,发展和广泛传播更好的方法,向所有学生教授AMO科学,更好的方法向所有学生教授AMO科学,尤其是通过在线互动模拟。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Fermi-degenerate three-dimensional optical lattice clock
- DOI:10.1126/science.aam5538
- 发表时间:2017-10-06
- 期刊:
- 影响因子:56.9
- 作者:Campbell, S. L.;Hutson, R. B.;Ye, J.
- 通讯作者:Ye, J.
New frontiers for quantum gases of polar molecules
- DOI:10.1038/nphys3985
- 发表时间:2017-01-01
- 期刊:
- 影响因子:19.6
- 作者:Moses, Steven A.;Covey, Jacob P.;Ye, Jun
- 通讯作者:Ye, Jun
One-dimensional magneto-optical compression of a cold CaF molecular beam
- DOI:10.1088/1367-2630/aa6470
- 发表时间:2017-03-27
- 期刊:
- 影响因子:3.3
- 作者:Chae, Eunmi;Anderegg, Loic;Doyle, John M.
- 通讯作者:Doyle, John M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Cornell其他文献
Eric Cornell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Cornell', 18)}}的其他基金
JILA PFC: Measurement, Manipulation, and Meaning at the Quantum Frontier
JILA PFC:量子前沿的测量、操作和意义
- 批准号:
1734006 - 财政年份:2017
- 资助金额:
$ 1685万 - 项目类别:
Cooperative Agreement
JILA AMO Physics Frontier Center
JILA AMO物理前沿中心
- 批准号:
0551010 - 财政年份:2006
- 资助金额:
$ 1685万 - 项目类别:
Cooperative Agreement
National Science Foundation Alan T. Waterman Award
美国国家科学基金会艾伦·T·沃特曼奖
- 批准号:
9725291 - 财政年份:1997
- 资助金额:
$ 1685万 - 项目类别:
Continuing Grant
相似国自然基金
理气化痰方介导Kal7-BDNF通路改善PFC-NAc-VTA神经环路突触可塑性治疗应激性抑郁大鼠的机制研究
- 批准号:82360921
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
电针抗抑郁的奖赏-反奖赏环路平衡的新机制:ATP介导的PFC谷氨酸能神经元对NAc和LHb投射的协同调控
- 批准号:82374586
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
氮化镓交错并联图腾柱PFC变换器开路故障诊断及容错控制研究
- 批准号:52307198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期高盐饮食影响子代PFC神经元发育和焦虑样行为的神经机制研究
- 批准号:82201318
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
孕期高盐饮食影响子代PFC神经元发育和焦虑样行为的神经机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Center: JILA-PFC: Comprehension and Control of Emerging Complexity at the Quantum Frontier
中心:JILA-PFC:量子前沿新兴复杂性的理解和控制
- 批准号:
2317149 - 财政年份:2023
- 资助金额:
$ 1685万 - 项目类别:
Cooperative Agreement
Role of PFC Activity in the Behavioral Deficits Induced by Maternal Separation
PFC 活性在母亲分离引起的行为缺陷中的作用
- 批准号:
10567520 - 财政年份:2023
- 资助金额:
$ 1685万 - 项目类别:
ヒト赤血球型第4世代PFC人工酸素運搬体の開発
人红细胞型第4代PFC人工氧载体的研制
- 批准号:
22K18311 - 财政年份:2022
- 资助金额:
$ 1685万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Dissecting PFC Endocannabinoid-THC -regulated circuits in movement behavior
剖析运动行为中 PFC 内源性大麻素 - THC 调节的电路
- 批准号:
10386291 - 财政年份:2022
- 资助金额:
$ 1685万 - 项目类别:
閉経後の肥満と骨の健康に資する食生活の基盤研究
有助于绝经后肥胖和骨骼健康的饮食习惯的基础研究
- 批准号:
22H00946 - 财政年份:2022
- 资助金额:
$ 1685万 - 项目类别:
Grant-in-Aid for Scientific Research (B)