NEB: Charge-Density-Wave Computational Fabric: New State Variables and Alternative Material Implementation
NEB:电荷密度波计算结构:新状态变量和替代材料实现
基本信息
- 批准号:1124733
- 负责人:
- 金额:$ 130万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: This project is awarded under the Nanoelectronics for 2020 and Beyond competition, with support by multiple Directorates and Divisions at the National Science Foundation as well as by the Nanoelectronics Research Initiative of the Semiconductor Research Corporation. Continuing evolution of electronics beyond the limits of the conventional silicon technology requires innovative approaches for solving the heat dissipation, speed and scaling issues. Alternative state variables other than dissipative charge transfer hold promise for drastic improvements in computational power. Collective states of magnetization, spin waves, and exciton condensates are being considered, but, to date, the performance results are modest. This project proposes a revolutionary new approach for the collective states that carry electrical signals, do not require magnetic fields, and can be realized at room temperature. The alternative state variables will be implemented with charge-density waves. The charge-density wave effects have been known for decades but never considered for information processing. The intellectual merit of this project includes better understanding of the material properties and physical processes of charge-density wave materials in highly-scaled, low-dimension regimes that have not yet been explored. The results of the project will lead to optimized device designs for exploiting charge-density waves and accurate understanding of the fundamental limits of the performance metrics. The intellectual merit also includes performance evaluation of the low-noise topological insulator interconnects proposed as part of new architectures. The project will result in new knowledge of the properties of the charge-density wave materials obtained with the help of optical microscopy, atomic-force microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and other techniques. Broader Impact: The proposed project will lead to a revolutionary new technology for replacing or complementing conventional silicon complementary metal-oxide-semiconductor technology. The phase, frequency and amplitude of the collective current of the interfering charge waves will encode information and allow for massive parallelism in information processing. The possibility of using the phase for logic operations allows one to minimize the required number of elements per circuit, reduce the power consumption, and ease the scaling requirement. The charge-density wave devices will be implemented with an alternative growth technique ? electrochemical atomic layer deposition ? with demonstrated potential for synthesis of crystalline atomically-thin layers of pertinent materials. The technique will allow the research team to experiment with new chemistries and heterogeneous integration of a variety of charge-density wave materials. The low-dissipation, massively parallel information processing with the collective state variables can satisfy the computational, communication, and sensor technology requirements for decades to come. The successful project will (i) improve the economic competitiveness of the United States; (ii) contribute to national security; and (iii) increase participation of underrepresented minorities in science and engineering. The project will result in improved student education and training at the University of California ? Riverside, a minority serving institution with a large Hispanic student population. The broader impact includes contributions to the development of a synergetic interdisciplinary Materials Science and Education program, as well as contributions to graduate and undergraduate training focused on materials synthesis, at the University of Georgia.
智力奖:该项目在 2020 年及以后纳米电子学竞赛中获奖,得到了美国国家科学基金会多个理事会和部门以及半导体研究公司纳米电子学研究计划的支持。电子产品的不断发展超越了传统硅技术的限制,需要创新的方法来解决散热、速度和缩放问题。除了耗散电荷转移之外的替代状态变量有望大幅提高计算能力。正在考虑磁化、自旋波和激子凝聚的集体状态,但迄今为止,性能结果并不理想。该项目为携带电信号、不需要磁场并且可以在室温下实现的集体状态提出了一种革命性的新方法。替代状态变量将通过电荷密度波来实现。电荷密度波效应几十年来一直为人所知,但从未考虑用于信息处理。该项目的智力价值包括更好地理解尚未探索的高尺度、低维体系中电荷密度波材料的材料特性和物理过程。该项目的结果将导致优化设备设计,以利用电荷密度波并准确理解性能指标的基本限制。智力优点还包括对作为新架构一部分提出的低噪声拓扑绝缘体互连的性能评估。该项目将借助光学显微镜、原子力显微镜、扫描电子显微镜、透射电子显微镜、拉曼光谱和其他技术获得关于电荷密度波材料特性的新知识。更广泛的影响:拟议的项目将带来革命性的新技术,以取代或补充传统的硅互补金属氧化物半导体技术。干扰电荷波的集体电流的相位、频率和幅度将对信息进行编码,并允许信息处理中的大规模并行性。使用该阶段进行逻辑运算的可能性允许人们最大限度地减少每个电路所需的元件数量,降低功耗并减轻缩放要求。电荷密度波器件将采用替代生长技术来实现?电化学原子层沉积 ?具有合成相关材料的晶体原子薄层的潜力。该技术将使研究团队能够试验新的化学物质和各种电荷密度波材料的异质集成。具有集体状态变量的低耗散、大规模并行信息处理可以满足未来几十年的计算、通信和传感器技术要求。该项目的成功将(i)提高美国的经济竞争力; (ii) 为国家安全做出贡献; (iii) 增加代表性不足的少数群体对科学和工程的参与。该项目将改善加州大学的学生教育和培训? Riverside 是一所少数族裔服务机构,拥有大量西班牙裔学生。更广泛的影响包括对佐治亚大学协同跨学科材料科学和教育项目的发展做出贡献,以及对以材料合成为重点的研究生和本科生培训做出贡献。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molybdenum diselenide formation using electrochemical atomic layer deposition (E-ALD)
- DOI:10.1016/j.jelechem.2017.01.065
- 发表时间:2017-05
- 期刊:
- 影响因子:4.5
- 作者:C. Tsang;Maria Ledina;J. Stickney
- 通讯作者:C. Tsang;Maria Ledina;J. Stickney
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Balandin其他文献
3D Ion Temperature Reconstruction
3D 离子温度重建
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Hiroshi Tanabe;Setthivoine You;Alexander Balandin;Michiaki Inomoto;Yasushi Ono - 通讯作者:
Yasushi Ono
Alexander Balandin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Balandin', 18)}}的其他基金
MRI: Development of a Cryogenic Integrated Micro-Raman-Brillouin-Mandelstam Spectrometer
MRI:低温集成微型拉曼-布里渊-曼德尔斯坦光谱仪的开发
- 批准号:
2019056 - 财政年份:2020
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
DMREF: Collaborative research: Data driven discovery of synthesis pathways and distinguishing electronic phenomena of 1D van der Waals bonded solids
DMREF:协作研究:数据驱动的合成途径发现和区分一维范德华键合固体的电子现象
- 批准号:
1921958 - 财政年份:2019
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Enhancing Pyroelectric Effects in Nanostructured Materials for High-Efficiency Energy Conversion
合作研究:EAGER:增强纳米结构材料的热释电效应以实现高效能量转换
- 批准号:
1549942 - 财政年份:2015
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
EFRI 2-DARE: Novel Switching Phenomena in Atomic Heterostructures for Multifunctional Applications
EFRI 2-DARE:用于多功能应用的原子异质结构中的新型开关现象
- 批准号:
1433395 - 财政年份:2014
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Genetic Algorithm Driven Hybrid Computational/Experimental Engineering of Defects in Designer Materials
CDS
- 批准号:
1404967 - 财政年份:2014
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Two Dimensional Performance with Three Dimensional Capacity: Engineering the Thermal Properties of Graphene
具有三维能力的二维性能:设计石墨烯的热性能
- 批准号:
1307671 - 财政年份:2013
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Graphene Circuits for Analog, Mixed-Signal, and RF Applications
SHF:小型:协作研究:用于模拟、混合信号和射频应用的石墨烯电路
- 批准号:
1217382 - 财政年份:2012
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
REU Site: Education Through Research in Nanomaterials and Nanodevices
REU 网站:通过纳米材料和纳米器件研究进行教育
- 批准号:
0552562 - 财政年份:2006
- 资助金额:
$ 130万 - 项目类别:
Continuing Grant
NER/SNB: Nanophononics: A New Approach to Electron Transport Enhancement in Nanoscale Devices
NER/SNB:纳米声学:纳米器件中电子传输增强的新方法
- 批准号:
0508516 - 财政年份:2005
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
SGER: Novel Phonon Engineering Concepts for Nanoscale Devices and 3D Integrated Circuits
SGER:纳米级器件和 3D 集成电路的新颖声子工程概念
- 批准号:
0407848 - 财政年份:2004
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
相似国自然基金
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
基于信息呈现与收费模式的平台治理研究
- 批准号:72271217
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于活动方法的自动驾驶通勤建模与拥堵收费问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑用户异质性的宏微观一体化停车网络动态建模及差别化停车收费优化方法
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于半约束驾驶行为的混合型收费站分流区交通安全评估与主动管控研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
- 批准号:
2347542 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Ultra-dense ceramic scintillator for BrainPET scanner
用于 BrainPET 扫描仪的超致密陶瓷闪烁体
- 批准号:
10761208 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别: