SNM: Continuous and Scalable Nanomanufacturing for 3-Dimensional Functional Biomedical Devices
SNM:连续且可扩展的 3 维功能生物医学设备纳米制造
基本信息
- 批准号:1120795
- 负责人:
- 金额:$ 130万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diabetes, heart failure, and hepatic failure are diseases of enormous burden to Americans. The effective therapies for these often lethal diseases require the application of novel engineering concepts and technologies. Tissue engineering holds great promise for the treatment of these diseases. Using biodegradable scaffolds, cells are organized in close proximity to each other with a well-defined 3-dimensional (3D) space for the formation of new tissues. While a typical biological cell has a size of several microns, the interactions of cells with the environment occur at a nanoscale. Fabricating such scaffolds with micro- and nano-scale features has been a significant bottleneck for industrial scale production of tissues. The goal of this research is to develop a novel nanomanufacturing system, Hyperlens-Assisted Projection Stereolithography (HAPS), with a sub-50 nm resolution for the direct-write of 3D, heterogeneous biological scaffolds. The research tasks include: a) design and fabrication of the hyperlens by combining simulation with experiments, b) integration of the hyperlens with the projection stereolithography system, c) design and fabrication of complex tissue scaffolds, and d) studying the growth and phenotypical modulation of vascular endothelial cells and smooth muscle cells using the scaffolds.If successful, this project will help to enhance the emerging US biomanufacturing industry for the production of vascular tissues, skins, bones, and other tissues and organs. The proposed HAPS technique will foster a giant step for scalable, continuous 3D nanomanufacturing of not only functional biomedical devices, but also 3D nanoelectronics, nanophotonics, and nanoenergy devices. Moreover, the results of this work will provide inspiring teaching materials and interesting laboratory projects. The proposed efforts of integrating research with education will offer undergraduates and graduate students increased exposure to nanomanufacturing. The proposed symposia and workshop will greatly enhance the impact of nanomanufacturing research.
糖尿病,心力衰竭和肝衰竭是给美国人带来巨大负担的疾病。这些经常致命疾病的有效疗法需要应用新颖的工程概念和技术。组织工程对治疗这些疾病有很大的希望。使用可生物降解的支架,细胞彼此紧密地组织,并有明确的3维(3D)空间,以形成新组织。虽然典型的生物细胞的大小为几微米,但细胞与环境的相互作用发生在纳米级。用微型和纳米尺度的特征制造这种脚手架是组织生产组织的重要瓶颈。这项研究的目的是开发一种新型的纳米制造系统,超长辅助的投影立体光刻(HAPS),并以3D的直接作用,异质生物支架的直接定位分辨率低于50 nm。 The research tasks include: a) design and fabrication of the hyperlens by combining simulation with experiments, b) integration of the hyperlens with the projection stereolithography system, c) design and fabrication of complex tissue scaffolds, and d) studying the growth and phenotypical modulation of vascular endothelial cells and smooth muscle cells using the scaffolds.If successful, this project will help to enhance the emerging US biomanufacturing industry for the血管组织,皮肤,骨骼以及其他组织和器官的产生。拟议的HAP技术将促进对功能性生物医学设备的可扩展,连续3D纳米制造的巨大步骤,还可以为3D纳米电子学,纳米光子和纳米器设备提供巨大的步骤。此外,这项工作的结果将提供鼓舞人心的教材和有趣的实验室项目。将研究与教育融合的拟议努力将为大学生提供,研究生增加了对纳米制造的影响。拟议的研讨会和研讨会将大大增强纳米制造研究的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaochen Chen其他文献
Toward a 3D bio-printed model of placental-villous transport: Growth and viability of human primary placental cell-types on hydrogel scaffolds
- DOI:
10.1016/j.placenta.2019.06.341 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:
- 作者:
Chandana Tekkatte;Claire Yu;Xuanyi Ma;Henry H. Hwang;Omar Farah;Ching-Wen Chang;Mana M. Parast;Shaochen Chen;Louise C. Laurent - 通讯作者:
Louise C. Laurent
Bioprinting of Complex Vascularized Tissues.
复杂血管组织的生物打印。
- DOI:
10.1007/978-1-0716-0611-7_14 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;Claire Yu;Bingjie Sun;Shaochen Chen - 通讯作者:
Shaochen Chen
Laser Processing of Natural Biomaterials
天然生物材料的激光加工
- DOI:
10.1007/978-3-642-41341-4_10 - 发表时间:
2013 - 期刊:
- 影响因子:4.6
- 作者:
Wande Zhang;Peter H. Chung;A. Zhang;Shaochen Chen - 通讯作者:
Shaochen Chen
LASER MICROMACHINING OF A BIODEGRADABLE POLYMER
可生物降解聚合物的激光微加工
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
V. Kancharla;Shaochen Chen;D. Zamzow;D. P. Baldwin - 通讯作者:
D. P. Baldwin
Tuning the absorptions of Au nanospheres on a microshell by photo-deformation
通过光变形调节微壳上金纳米球的吸收
- DOI:
10.1088/0957-4484/17/18/012 - 发表时间:
2006 - 期刊:
- 影响因子:3.5
- 作者:
Li;Tingji Tang;Shaochen Chen - 通讯作者:
Shaochen Chen
Shaochen Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaochen Chen', 18)}}的其他基金
BRITE Fellow: Intelligent Nanoscale 3D Biomanufacturing for Human-on-a-Chip
BRITE 研究员:用于芯片人体的智能纳米级 3D 生物制造
- 批准号:
2135720 - 财政年份:2022
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Rapid 3D Bioprinting of Engineered Bionic Corals towards Scalable Biofuel Manufacturing
工程仿生珊瑚的快速 3D 生物打印可实现可扩展的生物燃料制造
- 批准号:
1907434 - 财政年份:2019
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
EAGER: Three-Dimensional Printing of Functional Nanobots for Precision Gene Delivery
EAGER:用于精确基因传递的功能纳米机器人的三维打印
- 批准号:
1937653 - 财政年份:2019
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
EAGER: Understanding Nano-Cardio Interactions Using 3D Bioprinted Human Heart Tissue
EAGER:使用 3D 生物打印人体心脏组织了解纳米心脏相互作用
- 批准号:
1903933 - 财政年份:2019
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
EAGER: Scanningless 3D Bioprinting of Multiple Biomaterials and Cells for Biomimetic Vascular Network
EAGER:用于仿生血管网络的多种生物材料和细胞的非扫描 3D 生物打印
- 批准号:
1644967 - 财政年份:2016
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
EAGER: Cybermanufacturing: Cloud-based, Rapid, Microscale 3D Bioprinting
EAGER:网络制造:基于云的快速微型 3D 生物打印
- 批准号:
1547005 - 财政年份:2015
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Cell Modulation Using Biomaterials with a Negative Poisson's Ratio
使用具有负泊松比的生物材料进行细胞调节
- 批准号:
1332681 - 财政年份:2013
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Collaborative Research: Nano-/femtosecond Laser Processing of Gas Impregnated Polymer for Biomedical Applications
合作研究:用于生物医学应用的气体浸渍聚合物的纳秒/飞秒激光加工
- 批准号:
1130894 - 财政年份:2011
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Surface Plasmon-Assisted Nanolithography
表面等离子体辅助纳米光刻
- 批准号:
1109591 - 财政年份:2010
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Collaborative Research: Massive Parallel Laser Direct-Write of Sub-micron Dent Array for Quantum Leap of Fatigue Performance
合作研究:大规模并行激光直写亚微米凹痕阵列,实现疲劳性能的量子飞跃
- 批准号:
1106487 - 财政年份:2010
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
相似国自然基金
基于连续张量表示的高维数据复原问题研究
- 批准号:12371456
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
混沌自演化下基于连续学习的数控机床运动精度全生命周期劣化机制
- 批准号:52375083
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于双连续立方液晶的水系准固态电解质构筑及其离子迁移机制研究
- 批准号:22362014
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向镁合金熔体原位、连续测氢的质子导体基阻抗型传感器
- 批准号:52371187
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
SBIR Phase I: Continuous, Scalable Crystallizer for Pharmaceutical Manufacturing
SBIR 第一阶段:用于药品制造的连续、可扩展结晶器
- 批准号:
2233759 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Standard Grant
Biocatalytic nitro-reductions in scalable continuous flow reactors: paracetamol case study
可扩展连续流动反应器中的生物催化硝基还原:扑热息痛案例研究
- 批准号:
10077145 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别:
Collaborative R&D
A Scalable Continuous Production Platform for Large-Scale Manufacturing of Therapeutic Exosomes
用于大规模生产治疗性外泌体的可扩展连续生产平台
- 批准号:
10739425 - 财政年份:2023
- 资助金额:
$ 130万 - 项目类别: