String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
基本信息
- 批准号:1104555
- 负责人:
- 金额:$ 35.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal consists of several projects using algebraic topological techniques to study questions arising in String Topology, the topology of moduli spaces, and the study of Topological Quantum Field Theories. The theory of String Topology, first introduced by Chas and Sullivan in 1999, now involves a vast array of rich structure on spaces of paths and loops of manifolds. In this proposal, there are projects that will relate string topology to geometry and topological field theory. This includes a joint project with A. Blumberg and C. Teleman that will relate string topology to the recent classification theories of topological field theories due to Costello and Hopkins-Lurie. In particular they will construct and study a string topology category of a manifold, and compute its Hochschild homology. They will investigate the ``Calabi-Yau" properties of this category. In this study interesting questions involving the role of Koszul duality in topological field theory arise, which the authors will address. Cohen and his collaborators also have a goal of comparing the symplectic field theory of the cotangent bundle of a manifold, with the string topology of that manifold. Other projects in this proposal include a collaboration with M.Schwarz on the development of the ``Quantum String topology" of a symplectic manifold, and a project with N. Kitchloo, to address conjectures by the geometers F. Lalonde and D. McDuff on the Serre spectral sequence for bundles with symplectic fibers.This proposal consists of several projects investigating the area of research known as "String Topology", as well as related questions. String topology, a theory that was first introduced by Chas and Sullivan in 1999, studies structures on spaces of paths, loops, and surfaces. This structure was motivated by formalisms in string theory in physics. The idea is to understand how loops (or paths) in a background space can evolve in time. Loops can evolve by changing in size and even breaking apart. These phenomena are measured by studying surfaces mapping to the background space, that span these loops. In this project, Cohen tends to study various aspects of the theory related to topological quantum field theories, as well as those related to symplectic geometry.
该提案由几个项目组成,使用代数拓扑技术来研究弦拓扑、模空间拓扑和拓扑量子场论研究中出现的问题。弦拓扑理论由 Chas 和 Sullivan 于 1999 年首次提出,现在涉及路径空间和流形环上的大量丰富结构。 在这个提案中,有一些项目将弦拓扑与几何和拓扑场论联系起来。 其中包括与 A. Blumberg 和 C. Teleman 的联合项目,该项目将把弦拓扑与 Costello 和 Hopkins-Lurie 提出的拓扑场论的最新分类理论联系起来。 特别是,他们将构建和研究流形的弦拓扑类别,并计算其霍克希尔德同调性。 他们将研究这一范畴的“Calabi-Yau”性质。在这项研究中,出现了涉及科祖尔对偶性在拓扑场论中的作用的有趣问题,作者将解决这些问题。科恩和他的合作者还有一个目标是比较辛对偶性该提案中的其他项目包括与 M.Schwarz 合作开发辛的“量子弦拓扑”。流形,以及与 N. Kitchloo 合作的一个项目,旨在解决几何学家 F. Lalonde 和 D. McDuff 对辛纤维束的 Serre 谱序列的猜想。该提案由几个项目组成,调查被称为“弦拓扑”的研究领域”,以及相关问题。 弦拓扑是 Chas 和 Sullivan 于 1999 年首次提出的理论,研究路径、环路和曲面空间的结构。 这种结构是受到物理学弦理论形式主义的启发。 这个想法是为了理解背景空间中的循环(或路径)如何随时间演变。循环可以通过改变大小甚至分裂来演变。 这些现象是通过研究映射到跨越这些环的背景空间的表面来测量的。 在这个项目中,科恩倾向于研究与拓扑量子场论以及与辛几何相关的理论的各个方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Cohen其他文献
Vanishing lines in generalized Adams spectral sequences are generic
广义 Adams 谱序列中的消失线是通用的
- DOI:
10.2140/gt.1999.3.155 - 发表时间:
1999-07-02 - 期刊:
- 影响因子:2
- 作者:
Geometry Topology;G. G G G G G G G G G G G G G G;M. Hopkins;J. Palmieri;J. Smith;Ralph Cohen;Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
Role of simulation for paediatric proceduralists: Practice makes perfect or trial and error?
模拟对儿科程序学家的作用:熟能生巧还是反复试验?
- DOI:
10.1111/jpc.12039 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:1.7
- 作者:
S. S. Bidarkar;James Wood;Ralph Cohen;A. Holland - 通讯作者:
A. Holland
Factors affecting 13C-natural abundance measurement of breath carbon dioxide during surgery: absorption of carbon dioxide during endoscopic procedures.
影响手术期间呼吸二氧化碳 13C 自然丰度测量的因素:内窥镜手术期间二氧化碳的吸收。
- DOI:
10.1002/rcm.3572 - 发表时间:
2008-06-15 - 期刊:
- 影响因子:0
- 作者:
S. Eaton;M. Pacilli;James Wood;M. McHoney;L. Corizia;C. Kingsley;J. Curry;J. Herod;Ralph Cohen;A. Pierro - 通讯作者:
A. Pierro
Carbon dioxide absorption and elimination in breath during minimally invasive surgery
微创手术过程中呼吸中二氧化碳的吸收和消除
- DOI:
10.1088/1752-7155/3/4/047005 - 发表时间:
2009-11-27 - 期刊:
- 影响因子:3.8
- 作者:
S. Eaton;M. McHoney;L. Giacomello;M. Pacilli;M. Bishay;P. de Coppi;James Wood;Ralph Cohen;A. Pierro - 通讯作者:
A. Pierro
Improved automated perimetry performance following exposure to Mozart
听莫扎特音乐后,自动视野检查性能得到改善
- DOI:
10.1136/bjo.2005.085902 - 发表时间:
2006-02-15 - 期刊:
- 影响因子:4.1
- 作者:
Br J Ophthalmol;Carmo Cohen;Mauricio Della Mandia;Geraldo Paolera;V. Vicente De Almeida;Batista Macedo;N. Fiorelli;Andrea Santucci Kasahara;Ralph Fraça;Vanessa Macedo;Batista Fiorelli;N. Kasahara;Ralph Cohen;Andrea Santucci França;M. D. Paolera;C. Mandia;Geraldo Vicente De Almeida - 通讯作者:
Geraldo Vicente De Almeida
Ralph Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Cohen', 18)}}的其他基金
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
0905809 - 财政年份:2009
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
An International Conference on: New Challenges and Perspectives in Symplectic Field Theory
国际会议:辛场论的新挑战和前景
- 批准号:
0649446 - 财政年份:2007
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
SM: Geometry and Topology of Moduli Spaces and Applications
SM:模空间的几何和拓扑及其应用
- 批准号:
0603355 - 财政年份:2006
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
String Topology and the Algebraic Topology of Moduli Spaces
弦拓扑和模空间的代数拓扑
- 批准号:
0603713 - 财政年份:2006
- 资助金额:
$ 35.67万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
- 批准号:
0244550 - 财政年份:2003
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Workshop on the Mumford Standard Class Conjecture at Stanford University, July and August, 2001.
芒福德标准类猜想研讨会,斯坦福大学,2001 年 7 月和 8 月。
- 批准号:
0115014 - 财政年份:2001
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Presidential Young Investigator: Mathematical Sciences: Algebraic and Differential Topology
总统青年研究员:数学科学:代数和微分拓扑
- 批准号:
8352122 - 财政年份:1984
- 资助金额:
$ 35.67万 - 项目类别:
Continuing Grant
相似国自然基金
三维拓扑结构支架在定向引导神经干细胞修复耳蜗螺旋神经节中的作用及机制研究
- 批准号:82301331
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
瞬态高温环境下力学承载-防隔热一体化结构拓扑优化方法研究
- 批准号:12302148
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
低维磁性材料中新奇拓扑磁结构表征及电学调控物理机制研究
- 批准号:12374099
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于锁模磁岛拓扑结构调控的比压阿尔芬本征模激发机理研究
- 批准号:12375217
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Conference: CMND 2024 program: Field Theory and Topology
会议:CMND 2024 议程:场论与拓扑
- 批准号:
2350370 - 财政年份:2024
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 35.67万 - 项目类别:
Studentship
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
The investigation of the non-triviality of string topology in a topological quantum field theory and differentiable stacks
拓扑量子场论和可微堆栈中弦拓扑非平凡性的研究
- 批准号:
21H00982 - 财政年份:2021
- 资助金额:
$ 35.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Terahertz, Topology, Technology: Realising the potential of nanoscale Dirac materials using near-field terahertz spectroscopy
太赫兹、拓扑、技术:利用近场太赫兹光谱实现纳米级狄拉克材料的潜力
- 批准号:
MR/T022140/1 - 财政年份:2020
- 资助金额:
$ 35.67万 - 项目类别:
Fellowship