III: Large: Collaborative Research: SciDB - An Array Oriented Data Management System for Massive Scale Scientific Data
III:大型:协作研究:SciDB - 用于大规模科学数据的面向数组的数据管理系统
基本信息
- 批准号:1110370
- 负责人:
- 金额:$ 37.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative project brings together expertise of five research teams at Brown University (IIS-1111423), University of Washington (IIS-1110370), Massachusetts Institute of Technology (IIS-1111371), Portland State University (IIS-1110917) and University of Wisconsin-Madison (IIS-1111423). Scientific data management has traditionally been performed using the file system, at best using files structured according to a low-level data format. Higher-level data management infrastructure has been task-specific and not reusable in different domains, resulting in millions of dollars of duplicated implementation effort by scientists to manage their data. The goal of this project is the development of a scientific database (SciDB), a system designed and optimized for scientific applications. The aim of SciDB is to do for science what relational databases did for the business world, namely to provide a high performance, commercial-quality and scalable data management system appropriate for many science domains.In contrast to existing database systems, SciDB is based on a multidimensional array data model and includes multiple features specific to science and critical for science: provenance, uncertainty, versions, time travel, science-specific operations, and in situ data processing. No existing system offers all these features in a single, highly scalable engine. SciDB thus significantly advances the state-of-the-art in data management in addition to supporting domain scientists in data-driven knowledge discovery. The intellectual merit of SciDB is in exploring novel, high performance solutions to nested array storage, parallel array query optimization and execution, array language design, and time travel.The primary broader impact of SciDB is on the community of scientists who benefit from the tool. By keeping scientists "in the loop" in the design of the system from the outset, the project delivers software that is broadly usable to the community. The proposal also funds participation in a series of workshops that seek to engage even more of the science community. SciDB is an open-source effort, with an initial prototype (http://www.scidb.org/) already downloaded by hundreds of users. Finally, the PIs have a strong track record of delivering robust data management software that is widely used and involving students in the process, including students from under-represented groups. Further information can be found on the project web page (http://database.cs.brown.edu/projects/scidb).
该合作项目汇集了华盛顿大学布朗大学(IIS-111423)的五个研究团队(IIS-11110370),马萨诸塞州科技研究所(IIS-111371),波特兰州立大学(IIS-1111171)(IIS-11110917)和威斯康星大学 - 威斯康星大学麦迪逊大学(IIS-1111711111111111111423)。传统上,使用文件系统进行了科学数据管理,最多可以使用根据低级数据格式构造的文件。 高级数据管理基础架构是特定于任务的,并且在不同领域不可重复使用,导致科学家管理其数据的数百万美元重复的实施工作。 该项目的目的是开发科学数据库(SCIDB),该系统为科学应用设计和优化。 The aim of SciDB is to do for science what relational databases did for the business world, namely to provide a high performance, commercial-quality and scalable data management system appropriate for many science domains.In contrast to existing database systems, SciDB is based on a multidimensional array data model and includes multiple features specific to science and critical for science: provenance, uncertainty, versions, time travel, science-specific operations, and in situ data processing.现有的系统在单个高度可扩展的引擎中提供所有这些功能。因此,除了支持数据驱动的知识发现中,SCIDB除了支持领域科学家外,还可以显着提高数据管理中的最先进。 SCIDB的智力优点在于探索嵌套阵列存储的新颖,高性能解决方案,平行阵列查询优化和执行,阵列语言设计以及时间旅行。SCIDB的主要广泛影响是对受益于该工具的科学家社区的主要影响。 从一开始就将科学家“在系统的设计中”保持“循环”,该项目提供了广泛可用于社区的软件。该提案还资助了一系列试图参与更多科学界的研讨会。 SCIDB是一种开源工作,其初始原型(http://www.scidb.org/)已经由数百个用户下载。最后,PI在提供广泛使用的强大数据管理软件方面具有良好的记录,并参与了学生,包括来自代表性不足的小组的学生。可以在项目网页(http://database.cs.brown.edu/projects/scidb)上找到更多信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magdalena Balazinska其他文献
Finiteness
有限性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Susan Dumais;Magdalena Balazinska;Jeong;Mehul Shah;Raimondo Schettini;Gianluigi Ciocca;Isabella Gagliardi;Manoranjan Dash;Poon Wei Koot;Benjamin Bustos;Tobias Schreck;Vassilis Plachouras;Michael F. Goodchild;Val Tannen;C. S. Jensen;R. Snodgrass;Aidong Zhang;Bharat Bhargava;Phillip B. Gibbons;Ethan Zhang;Yi Zhang;Soumen Chakrabarti;Alin Deutsch;Jessica Kennedy;A. Cannon;Marcelo Arenas;P. Gray;Ke Deng;D. Woodruff;Jun Huan;Ahmed Metwally;C. Leung;Hong Cheng;Jiawei Han;Antti Ukkonen;Cai;G. Dobbie;Tok Wang Ling;Solmaz Kolahi;Gabriella Pasi;V. Novák - 通讯作者:
V. Novák
USENIX Association Proceedings of MobiSys 2003 : The First International Conference on Mobile Systems , Applications , and Services
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Magdalena Balazinska - 通讯作者:
Magdalena Balazinska
Literature Survey of Clone Detection Techniques
克隆检测技术文献综述
- DOI:
10.5120/17355-7858 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Sonam Gupta;P. C. Gupta;Brenda S. Baker;Magdalena Balazinska;Ettore Merlo;Michel Dagenais;Bruno Lague;Hamid Basit;Simon Pugliesi;William Smyth;Andrei Turpin;Ira Baxter;A. Yahin;Leonardo Moura;Marcelo Sant;J. Cordy;Thomas Dean - 通讯作者:
Thomas Dean
Magdalena Balazinska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Magdalena Balazinska', 18)}}的其他基金
III: Medium: VOCAL: Video Organization and Interactive Compositional AnaLytics
III:媒介:声乐:视频组织和交互式构图分析
- 批准号:
2211133 - 财政年份:2022
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
HDR: I-DIRSE-FW: Accelerating the Engineering Design and Manufacturing Life-Cycle with Data Science
HDR:I-DIRSE-FW:利用数据科学加速工程设计和制造生命周期
- 批准号:
1934292 - 财政年份:2019
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
SHF: Medium: A Visual Cloud for Virtual Reality Applications
SHF:Medium:虚拟现实应用程序的视觉云
- 批准号:
1703051 - 财政年份:2017
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
III: Small: Data Analysis in the Cloud with Guaranteed and Explainable Performance
III:小型:云端数据分析,性能有保证且可解释
- 批准号:
1524535 - 财政年份:2015
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
IGERT-CIF21: Big Data U: A Program for Integrated Multidisciplinary Education and Research for Big Data Science
IGERT-CIF21:大数据 U:大数据科学综合多学科教育和研究计划
- 批准号:
1258485 - 财政年份:2013
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
CiC RDDC: Relational Data Markets in the Cloud
CiC RDDC:云中的关系数据市场
- 批准号:
1047815 - 财政年份:2011
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
CDI - Type II: Transforming Community-Based Elder Care through Heterogeneous Activity Sensing Analytics
CDI - II 类:通过异构活动感知分析转变基于社区的老年护理
- 批准号:
1028195 - 财政年份:2010
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
CAREER: Interactive and Collaborative Data Management in the Cloud
职业:云中的交互式和协作数据管理
- 批准号:
0845397 - 财政年份:2009
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
III-COR: Exploiting History in Continuous Monitoring Systems
III-COR:利用连续监测系统的历史
- 批准号:
0713123 - 财政年份:2007
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
相似国自然基金
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
- 批准号:52365047
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向大跨度结构的高强多孔骨料内养护UHPC徐变性能与模型研究
- 批准号:52308231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度光学的大视场高分辨宽景深小型化显微成像
- 批准号:62301293
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
- 批准号:12374318
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
二维氮化钼/磷化钼面内异质结构催化材料的设计合成及大电流密度析氢性能研究
- 批准号:22379116
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Continuing Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
- 批准号:
2236578 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
- 批准号:
2236579 - 财政年份:2023
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Cost-Efficient Sampling and Estimation from Large-Scale Networks
III:小型:协作研究:大规模网络的经济高效采样和估计
- 批准号:
2209921 - 财政年份:2021
- 资助金额:
$ 37.08万 - 项目类别:
Standard Grant
Collaborative Research: Chameleon Phase III: A Large-Scale, Reconfigurable Experimental Environment for Cloud Research
合作研究:Chameleon 第三阶段:用于云研究的大规模、可重构实验环境
- 批准号:
2027170 - 财政年份:2020
- 资助金额:
$ 37.08万 - 项目类别:
Cooperative Agreement