Analytic and geometric properties of variational inequalities and PDE

变分不等式和偏微分方程的解析和几何性质

基本信息

  • 批准号:
    1101246
  • 负责人:
  • 金额:
    $ 22.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

In recent years, the analysis and geometry of sub-Riemannian spaces has received increased attention. The quintessential examples of sub-Riemannian settings are the so-called Carnot groups, whose fundamental role in analysis was first highlighted by E. M. Stein. They now occupy a central position not only in the study of hypoelliptic partial differential equations, harmonic analysis, and geometric function theory, but also in the applied sciences such as mathematical finance, mechanical engineering, and the neurophysiology of the brain. The most distinctive feature of sub-Riemannian spaces is that the metric structure can be viewed as a constrained geometry, where motion is possible only along a prescribed set of directions, changing from point to point. The principal investigator has a long-term project aimed at investigating geometric and analytic properties of these structures. More specifically, she proposes to continue her study of the Bernstein problem and of the regularity of minimal surfaces in Carnot groups, to investigate subelliptic boundary value problems, and to develop a regularity theory for fully nonlinear equations of Monge-Ampere type. Another area of interest in this project is the investigation of elliptic and parabolic free boundary problems that arise naturally in the theory of flame propagation. The principal investigator also intends to study a class of minimization problems in which the relevant functional is modeled after the one introduced by Alt and Caffarelli. In addition, she is interested in exploring variational inequalities of elliptic and parabolic type with obstacles confined to lie in lower dimensional manifolds. One of the main objectives of the proposed research is to prove regularity properties of the free boundary. The necessary tools from harmonic analysis and the theory of partial differential equations for the study of such problems will be developed concurrently. Finally, motivated by the striking analogy between the theories of minimal surfaces and of free boundaries in the Euclidean setting, the principal investigator plans to merge her different lines of research into a yet quite unexplored area, namely, the study of free boundary problems (both of obstacle and Alt-Caffarelli type) in Carnot groups. The principal investigator has a research program that lies at the interface of the areas of mathematics known as the calculus of variations, partial differential equations, and geometric measure theory. The focus is on the study of analytic and geometric properties of solutions to so-called variational inequalities and partial differential equations involving a system of "noncommuting" vector fields. The proposed problems not only turn up in a variety of mathematical contexts (e.g., optimal control theory, mathematical finance, and geometry) but are also of interest in other fields such as mechanical engineering, robotics, and neurophysiology. A second focus of the project concerns free boundary problems, which surface in physics and engineering in situations where a conserved quantity or relation changes discontinuously across some value of the variables under consideration. The free boundary appears, for instance, as the interface between a fluid and the air, or between water and ice. One of the proposed projects aims at studying regularity properties of the free boundary in burnt-unburnt mixtures. The results of this investigation will lead to a better understanding of the models, to the improvement of simulation methods, and ultimately to a precise description of how flames propagate in nonhomogeneous media. As mentioned earlier, several parts of this project find their motivation in the applied sciences. On the other hand, their solutions involve an interplay of ideas from different areas of analysis and geometry. It is conceivable that all these different fields will benefit from this synergy. The principal investigator is committed to the training of future generations of mathematicians and to increasing the representation of women in the scientific community via the organization of a variety of educational and mentoring activities for untenured faculty and graduate, undergraduate, and K-12 students.
近年来,亚黎曼空间的分析和几何越来越受到关注。亚黎曼设置的典型例子是所谓的卡诺群,其在分析中的基本作用首先由 E. M. Stein 强调。它们现在不仅在亚椭圆偏微分方程、调和分析和几何函数论的研究中占据着中心地位,而且在数学金融、机械工程和大脑神经生理学等应用科学中也占据着中心地位。亚黎曼空间最显着的特征是,度量结构可以被视为一种受约束的几何结构,其中运动只能沿着一组规定的方向进行,从一个点到另一个点都在变化。 首席研究员有一个长期项目,旨在研究这些结构的几何和分析特性。更具体地说,她建议继续研究伯恩斯坦问题和卡诺群中最小曲面的正则性,研究亚椭圆边值问题,并发展 Monge-Ampere 型完全非线性方程的正则性理论。 该项目的另一个感兴趣的领域是研究火焰传播理论中自然出现的椭圆和抛物线自由边界问题。首席研究员还打算研究一类最小化问题,其中相关泛函是按照 Alt 和 Caffarelli 提出的函数建模的。此外,她对探索椭圆形和抛物线型的变分不等式感兴趣,其中障碍仅限于低维流形。该研究的主要目标之一是证明自由边界的规律性。研究此类问题所需的调和分析和偏微分方程理论工具将同时开发。最后,受欧几里得环境中最小曲面理论和自由边界理论之间惊人相似的启发,首席研究员计划将她的不同研究方向合并到一个尚未探索的领域,即自由边界问题的研究(两者)卡诺群中的障碍和 Alt-Caffarelli 类型)。首席研究员有一个研究项目,该项目位于数学领域的交汇处,称为变分法、偏微分方程和几何测度论。重点是研究涉及“非交换”矢量场系统的所谓变分不等式和偏微分方程解的解析和几何性质。所提出的问题不仅出现在各种数学背景中(例如,最优控制理论、数学金融和几何),而且在机械工程、机器人学和神经生理学等其他领域也很有趣。该项目的第二个重点涉及自由边界问题,该问题在物理学和工程学中出现,即守恒量或关系在所考虑的变量的某些值上不连续变化的情况。例如,自由边界表现为流体和空气之间或水和冰之间的界面。 拟议项目之一旨在研究已燃-未燃混合物中自由边界的规律性特性。这项研究的结果将有助于更好地理解模型,改进模拟方法,并最终精确描述火焰如何在非均匀介质中传播。 如前所述,该项目的几个部分在应用科学中找到了动力。另一方面,他们的解决方案涉及来自不同分析和几何领域的思想的相互作用。可以想象,所有这些不同的领域都将从这种协同效应中受益。首席研究员致力于培养未来几代数学家,并通过为非终身教职人员、研究生、本科生和 K-12 学生组织各种教育和指导活动,提高女性在科学界的代表性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donatella Danielli其他文献

Donatella Danielli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donatella Danielli', 18)}}的其他基金

Sixth Symposium on Analysis and Partial Differential Equations
第六届分析与偏微分方程研讨会
  • 批准号:
    1500796
  • 财政年份:
    2015
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Standard Grant
Analysis and Geometry of Nonlinear PDEs
非线性偏微分方程的分析和几何
  • 批准号:
    0801090
  • 财政年份:
    2008
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Continuing Grant
CAREER: Analytic and Geometric Aspects of Partial Differential Equations
职业:偏微分方程的解析和几何方面
  • 批准号:
    0239771
  • 财政年份:
    2003
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Continuing Grant
Free Boundaries, PDE's, and Geometric Measure Theory
自由边界、偏微分方程和几何测度理论
  • 批准号:
    0202801
  • 财政年份:
    2002
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Standard Grant

相似国自然基金

高超声速双翼机翼热气动弹性特性的几何构型影响因素研究
  • 批准号:
    12002330
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
分形几何应用于涡轮冷却的流热耦合特性研究
  • 批准号:
    52076128
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
中小尺寸团簇几何结构和电子特性的高分辨扫描探针显微成像与测量
  • 批准号:
    91961102
  • 批准年份:
    2019
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
预热影响柱收缩几何Rayleigh-Taylor不稳定性的特性研究
  • 批准号:
    11905205
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
敏感材料特性与器件几何构型对MXene基压阻传感器灵敏度的调控机制研究
  • 批准号:
    11904091
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Analytic and Geometric Properties of Random Cantor Sets
随机康托集的解析和几何性质
  • 批准号:
    510518-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The Analytic and Geometric Properties of Random Cantor Sets
随机康托集的解析和几何性质
  • 批准号:
    510518-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Geometric and Analytic Properties of Real Hypersurfaces in Complex Euclidean and Projective Spaces
复欧几里得空间和射影空间中实超曲面的几何和解析性质
  • 批准号:
    1161735
  • 财政年份:
    2012
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Continuing Grant
Geometric structure of manifold and the blow-up problem of nonlinear heat equation
流形几何结构与非线性热方程的爆炸问题
  • 批准号:
    23740128
  • 财政年份:
    2011
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Analytic properties of arithmetic zeta functions and geometric symmetry
算术 zeta 函数的解析性质和几何对称性
  • 批准号:
    21740004
  • 财政年份:
    2009
  • 资助金额:
    $ 22.48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了