Inference under Selection and Model Uncertainty
选择和模型不确定性下的推理
基本信息
- 批准号:1105127
- 负责人:
- 金额:$ 17.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project has two distinct parts, each suggested by problems of inference in genomic experiments. The first problem arises because, typically, thousands of genes are screened, and a smaller number are selected for further study. Statistical inference must take this selection mechanism into account, otherwise the actual confidence coefficient is smaller than the nominal level, and approaches zero as the number of genes increases. The goal is to construct valid frequentist confidence intervals for the means of the selected populations. This will provide a confidence interval alternative to the False Discovery Rate. The second problem deals with inference under model uncertainty, where the goal is to account for the variability induced by the collection of models. Here a Bayesian approach is taken, seeking to construct intervals accounting for model uncertainty, investigate the impact of the choice of priors on model space, and construct new search algorithms that take advantage of parallel processing and can be used in the case when there are more covariates than observations.The work will have impact in both genomic studies and high performance computing. First, for inference from genomic studies, a valid statistical procedure to screen results will be provided. Insuring that the inferences are valid is of crucial importance, as illustrated by a recent NY Times article where a genomic disease therapy was found to be useless, because of faulty statistical inference (``How Bright Promise in Cancer Testing Fell Apart", NY Times, July 7, 2011). Second, parallel processing algorithms, using high performance computing, will be developed. These algorithms take advantage of the abundance of processors typically available, and split the large genomic selection problem across the many processors. This results in answers from these statistical procedures that can be available in real time, and thus be relevant in a clinical setting.
该项目有两个不同的部分,每个部分都由基因组实验中的推断问题提出。 出现第一个问题是因为通常筛选了成千上万个基因,并且选择了较小的基因进行进一步研究。 统计推断必须考虑此选择机制,否则实际的置信系数小于标称水平,并且随着基因数量的增加而接近零。目标是为所选人群构建有效的频繁置信区间。这将提供错误发现率的置信区间替代方案。 第二个问题涉及模型不确定性下的推论,目标是考虑到模型收集所引起的变异性。 在这里采用了贝叶斯方法,试图构建时间间隔,以说明模型不确定性,研究先验对模型空间的影响,并构建利用并行处理的新搜索算法,并且在观察结果中可以使用比观测更大的情况。在基因组研究和高度性能计算中都有影响。 首先,对于基因组研究的推论,将提供有效的筛选结果统计程序。正如最近的《纽约时报》(Ny Times)的一篇文章所说明的那样,确保这些推论是至关重要的,在该文章中发现了基因组疾病疗法是毫无用处的,因为统计上的统计学不良(````````'ny Times,2011年7月7日,2011年7月7日的癌症测试有多崩溃了)。其次,使用了这些典型的algorith comporting。将大型基因组选择问题划分为许多处理器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Young其他文献
Gender differences in Afghan drug-abuse treatment: an assessment of treatment entry characteristics, dropout, and outcomes
阿富汗药物滥用治疗中的性别差异:治疗进入特征、退出和结果的评估
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.1
- 作者:
Melissa H. Abadi;Stephen R. Shamblen;Matthew W. Courser;Knowlton W. Johnson;Kirsten T Thompson;Linda Young;T. Browne - 通讯作者:
T. Browne
The fluorescence lifetimes of methyl‐s‐tetrazine and dimethyl‐s‐tetrazine
甲基-s-四嗪和二甲基-s-四嗪的荧光寿命
- DOI:
10.1063/1.447473 - 发表时间:
1984 - 期刊:
- 影响因子:0
- 作者:
C. Haynam;Linda Young;C. Morter;D. Levy - 通讯作者:
D. Levy
The Power of Relationships
关系的力量
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.1
- 作者:
M. Aston;S. Price;J. Etowa;A. Vukic;Linda Young;C. Hart;E. MacLeod;Patricia Randel - 通讯作者:
Patricia Randel
P19-003-23 Updates to the Dietary Supplement Ingredient Database (DSID)
- DOI:
10.1016/j.cdnut.2023.101337 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Karen Andrews;Pavel Gusev;Laura Oh;Josiah Ekong;Deepesh Pandey;Suma Vavilala;Kang Shen;Pamela Pehrsson;Linda Young;Tyler Wilson;Samuel Garber;Johanna Dwyer;Rebecca Costello;Leila Saldanha - 通讯作者:
Leila Saldanha
P2.05-020 Survival Outcomes in Stage 1 NSCLC Following Stereotactic Ablative Radiotherapy or Conventional Radiotherapy: Topic: Clinical Outcome
- DOI:
10.1016/j.jtho.2016.11.1454 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Gerard Hanna;Ruth Johnston;Ruth Eakin;Linda Young;Jacqueline Harney;Jonathan Mcaleese - 通讯作者:
Jonathan Mcaleese
Linda Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Young', 18)}}的其他基金
Collaborative Research: Identifying Structure in Social Data Models using Markov Chain Monte Carlo Algorithms
协作研究:使用马尔可夫链蒙特卡罗算法识别社会数据模型中的结构
- 批准号:
1028329 - 财政年份:2010
- 资助金额:
$ 17.24万 - 项目类别:
Continuing Grant
Workshop on Categorical Data Analysis
分类数据分析研讨会
- 批准号:
0951689 - 财政年份:2009
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Winter Workshop on Longitudinal Data Analysis
纵向数据分析冬季研讨会
- 批准号:
0502454 - 财政年份:2004
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Advance Fellows Award: The WTO and Food Aid:Preserving Humanitarian and Developmental Benefits
高级研究员奖:世贸组织和粮食援助:维护人道主义和发展利益
- 批准号:
0340712 - 财政年份:2004
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Yellowstone Old Faithful Visitor Education Center
黄石老忠实游客教育中心
- 批准号:
0307709 - 财政年份:2003
- 资助金额:
$ 17.24万 - 项目类别:
Continuing grant
Mathematical Sciences: Inferences Concerning the Mean of Negative Binomial Populations
数学科学:关于负二项式总体均值的推论
- 批准号:
8809492 - 财政年份:1988
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference in Mathematical Stochastics of Species Abundance & Community Composition; Stillwater, OK; October 7-11, 1985
数学科学:NSF-CBMS 物种丰度数学随机区域会议
- 批准号:
8503714 - 财政年份:1985
- 资助金额:
$ 17.24万 - 项目类别:
Standard Grant
相似国自然基金
体硅下薄膜(TUB,Thinfilm Under Bulk)复合结构成型机理及其高性能器件研究
- 批准号:61674160
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Effect of Dietary Carbohydrate on Diabetes Control and Beta Cell Function in Children with Newly Diagnosed Diabetes.”
膳食碳水化合物对新诊断糖尿病儿童的糖尿病控制和 β 细胞功能的影响。
- 批准号:
10637032 - 财政年份:2023
- 资助金额:
$ 17.24万 - 项目类别:
Developing variable selection methods and post-selection inference under double-descent phenomena
开发双下降现象下的变量选择方法和选择后推理
- 批准号:
23K18471 - 财政年份:2023
- 资助金额:
$ 17.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Predictive Biosignature for Endoscopic Therapy for Chronic Pancreatitis Pain
慢性胰腺炎疼痛内镜治疗的预测生物特征
- 批准号:
10794609 - 财政年份:2023
- 资助金额:
$ 17.24万 - 项目类别:
Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
- 批准号:
10699074 - 财政年份:2023
- 资助金额:
$ 17.24万 - 项目类别:
The ecology of P capture in organic wheat: Will selection under low P, organic conditions provide access to hidden pathways?
有机小麦中磷捕获的生态学:低磷、有机条件下的选择是否会提供隐藏途径?
- 批准号:
545971-2020 - 财政年份:2022
- 资助金额:
$ 17.24万 - 项目类别:
Postgraduate Scholarships - Doctoral