Reliability Prediction Based on Dynamic Data Collected with Modern Technology
基于现代技术采集的动态数据的可靠性预测
基本信息
- 批准号:1068933
- 负责人:
- 金额:$ 21.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to develop a general framework that can incorporate large-scale dynamic data to obtain more accurate reliability predictions. Modern technology, such as smart-chips, sensors and wireless networks, has changed data collection processes. There are more and more products installed with automatic data-collecting devices (ADCDs) which can dynamically record system performance, usage and environmental information for individual units in the field and/or transmit this information to data centers with owner's permissions. These products range from jet engines, wind turbines, power transformers and CAT scanners, to automobiles, copier machines and smart-phones. This research will first develop general models for incorporating dynamic data into predictions. Then methods will be developed for quantifying statistical uncertainties and advantage of using dynamic data. Sensitivity analysis will be conducted to assess model uncertainties. Computationally efficient algorithms and free software that is capable of processing large-scale datasets will also be developed. The developed methods will be validated with datasets from industrial and government partners.If successful, this research will provide a much-needed new paradigm for the arriving generation of field reliability data. In the near future when the cost of ADCDs further decreases, more and more products will be equipped with ADCDs. This research will have applications in various important areas such as manufacturing, renewable energy, and health care, because reliability information is critical for manufacturers to improve the competitive position of their products, and is also important for cost analysis, capital expenditures, and risk controls. The development of free software will make it possible for the developed methods to be widely disseminated. Graduate and undergraduate students from under-represented groups and women will be involved in this research. The integration of research with teaching will present students with modern reliability data analysis concepts and techniques.
该奖项的研究目标是开发一个通用框架,该框架可以结合大规模的动态数据以获得更准确的可靠性预测。现代技术,例如智能芯片,传感器和无线网络,已经改变了数据收集过程。安装了越来越多的产品,其中包括自动数据接收设备(ADCD),可以动态记录该现场单个单元的系统性能,使用和环境信息,并/或以所有者的权限传输此信息。这些产品范围从喷气发动机,风力涡轮机,电源变压器和猫扫描仪到汽车,复印机和智能手机。这项研究将首先开发用于将动态数据纳入预测的通用模型。然后,将开发方法来量化统计不确定性和使用动态数据的优势。将进行灵敏度分析以评估模型不确定性。还将开发能够处理大规模数据集的计算有效算法和免费软件。开发的方法将通过工业和政府合作伙伴的数据集进行验证。如果成功,这项研究将为到达现场可靠性数据的产生提供急需的新范式。在不久的将来,当ADCD的成本进一步降低时,越来越多的产品将配备ADCD。这项研究将在制造,可再生能源和医疗保健等各个重要领域的应用中应用,因为可靠性信息对于制造商而言至关重要的是改善产品的竞争地位,并且对于成本分析,资本支出和风险控制也很重要。自由软件的开发将使开发的方法被广泛传播成为可能。来自代表性不足的团体和妇女的研究生和本科生将参与这项研究。研究与教学的整合将向学生提供现代可靠性数据分析概念和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yili Hong其他文献
Algorithm 1012
算法1012
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Tyler H. Chang;L. Watson;T. Lux;A. Butt;K. Cameron;Yili Hong - 通讯作者:
Yili Hong
On the Role of Fairness and Social Distance in Designing Effective Social Referral Systems
论公平和社交距离在设计有效的社交推荐系统中的作用
- DOI:
10.25300/misq/2017/41.3.06 - 发表时间:
2016-10 - 期刊:
- 影响因子:7.3
- 作者:
Yili Hong;Paul Pavlou;Nan Shi;Kanliang Wang - 通讯作者:
Kanliang Wang
User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community
开放创新社区中的用户创意实施:来自新产品开发众包社区的证据
- DOI:
10.1111/isj.12286 - 发表时间:
2020-03 - 期刊:
- 影响因子:6.4
- 作者:
Qian Liu;Qianzhou Du;Yili Hong;Weiguo Fan;Shuang Wu - 通讯作者:
Shuang Wu
Effective Nonparametric Distribution Modeling for Distribution Approximation Applications
分布近似应用的有效非参数分布建模
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
T. Lux;L. Watson;Tyler H. Chang;Li Xu;Yueyao Wang;Jon Bernard;Yili Hong;K. Cameron - 通讯作者:
K. Cameron
Motivating User-Generated Content with Performance Feedback: Evidence from Randomized Field Experiments
通过性能反馈激励用户生成的内容:来自随机现场实验的证据
- DOI:
10.2139/ssrn.2971783 - 发表时间:
2017-05 - 期刊:
- 影响因子:5.4
- 作者:
Ni Huang;Gordon Burtch;Bin Gu;Yili Hong;Chen Liang;Kanliang Wang;Dongpu Fu;Bo Yang - 通讯作者:
Bo Yang
Yili Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yili Hong', 18)}}的其他基金
Conference: The 2024 Joint Research Conference on Statistics in Quality, Industry, and Technology (JRC 2024) - Data Science and Statistics for Industrial Innovation
会议:2024年质量、工业和技术统计联合研究会议(JRC 2024)——数据科学与统计促进产业创新
- 批准号:
2404998 - 财政年份:2024
- 资助金额:
$ 21.02万 - 项目类别:
Standard Grant
Doctoral Dissertation Research in DRMS: Expectation Bias and the Gender Wage Gap in the Online Gig Economy
DRMS 博士论文研究:在线零工经济中的期望偏差和性别工资差距
- 批准号:
1824432 - 财政年份:2018
- 资助金额:
$ 21.02万 - 项目类别:
Standard Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
强子对撞机上一对希格斯粒子产生和衰变过程的精确理论预言
- 批准号:12375076
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
强子三维结构分布函数的理论预言
- 批准号:12375080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于机器学习方法设计和预言多组元合金体系材料的研究
- 批准号:92270104
- 批准年份:2022
- 资助金额:75.00 万元
- 项目类别:重大研究计划
次次领头阶anti-kT以及同类型的喷注函数和pA对撞中喷注向前产生的预言
- 批准号:12175016
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Sensory Phenotyping to Enhance Neuropathic Pain Drug Development
感觉表型增强神经病理性疼痛药物的开发
- 批准号:
10724809 - 财政年份:2023
- 资助金额:
$ 21.02万 - 项目类别:
Development of system reliability improvement technology based on medium- to long-term failure prediction
基于中长期故障预测的系统可靠性提升技术开发
- 批准号:
21H03449 - 财政年份:2021
- 资助金额:
$ 21.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Smart Technology for Anorexia Nervosa Recovery: A Pilot Intervention for the Post-Acute Treatment of Anorexia Nervosa
神经性厌食症康复智能技术:神经性厌食症急性后治疗的试点干预
- 批准号:
10450116 - 财政年份:2021
- 资助金额:
$ 21.02万 - 项目类别:
Smart Technology for Anorexia Nervosa Recovery: A Pilot Intervention for the Post-Acute Treatment of Anorexia Nervosa
神经性厌食症康复智能技术:神经性厌食症急性后治疗的试点干预
- 批准号:
10656299 - 财政年份:2021
- 资助金额:
$ 21.02万 - 项目类别:
Smart Technology for Anorexia Nervosa Recovery: A Pilot Intervention for the Post-Acute Treatment of Anorexia Nervosa
神经性厌食症康复智能技术:神经性厌食症急性后治疗的试点干预
- 批准号:
10284797 - 财政年份:2021
- 资助金额:
$ 21.02万 - 项目类别: