Smart Technology for Anorexia Nervosa Recovery: A Pilot Intervention for the Post-Acute Treatment of Anorexia Nervosa
神经性厌食症康复智能技术:神经性厌食症急性后治疗的试点干预
基本信息
- 批准号:10284797
- 负责人:
- 金额:$ 24.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-13 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdolescenceAdolescentAmbulatory CareAnorexiaAnorexia NervosaAnxietyAssessment toolBackBody Weight decreasedBrainCar PhoneCaringCellular PhoneChronicChronic DiseaseClientClinicalClinical ServicesClinical TrialsCommunitiesCommunity PracticeCoupledDataDevelopmentDiagnosisEating DisordersEffectivenessEffectiveness of InterventionsEmotionsEquipment and supply inventoriesEvidence based interventionFamilyFeedbackFocus GroupsFutureGoalsHealth PersonnelImpairmentIndividualInosine DialdehydeInterventionLeadLeftLengthMachine LearningMeasuresMental DepressionMental disordersMissionMoodsNational Institute of Mental HealthNotificationOrganOsteopeniaOsteoporosisOutcomeOutpatientsOutputPaperParticipantPatientsPreventionProcessProtocols documentationPsyche structurePublic HealthRandomizedRandomized Controlled TrialsRecoveryRelapseReportingResearchRiskScienceSignal TransductionStructureSymptomsTechnologyTechnology AssessmentTestingUnited States National Institutes of HealthValidity and ReliabilityWorkadolescent patientanxiety symptomsbaseclinical decision supportclinical practicecomputerizeddepressive symptomsdigitalearly onseteating pathologyefficacious interventionevidence baseimprovedimproved outcomeinnovationmHealthmachine learning algorithmmedical specialtiesmortalitypersonalized medicinepost interventionpractice settingpredictive toolspreventresponserisk predictionroutine practicesatisfactionsupport toolstooltreatment optimizationtreatment responseusability
项目摘要
PROJECT SUMMARY/ABSTRACT
Anorexia nervosa (AN) has the highest mortality rate of any mental illness, with a typical onset in adolescence.
Although family-based interventions are efficacious for up to 75% of adolescents with AN, approximately 30%
will relapse after recovery. There is a critical need to optimize treatments and prevent post-discharge relapse
following acute treatment to improve outcomes for adolescents with AN. To address this critical need, our team
developed a suite of digital tools that advance the science of assessment, risk prediction, and clinical-decision
support for use in the post-acute treatment window, called “Smart Treatment for Anorexia Recovery (STAR).”
STAR uses cutting-edge assessment technology to shorten test administration and machine-learning to predict
likelihood of recovery. This information is then provided back to the clinician via an easy-to-use clinical-
decision support tool to alert the clinician when user-entered data suggests the patient is not progressing. In
the current application, we propose to expand STAR to test an adaptive mHealth intervention delivered in the
post-discharge window. Our scientific premise is that a transdiagnostic assessment and clinical-decision
support tool delivered within the STAR suite will optimize face-to-face clinical service and the addition of an
adaptive mHealth intervention will improve outpatient treatment response and reduce relapse in adolescents
discharged from intensive treatment for AN. Our previous work supports our scientific premise. Specifically, our
studies provide robust support for the predictive validity and clinical utility of our assessment tool for predicting
ED-related psychiatric impairment and recovery. However, the number of items across our paper-based
assessment tool is 144, which is overly long for routine use. To overcome this challenge, we developed a
mobile phone app that uses computerized adaptive testing to reduce assessment length by up to 50% while
retaining the reliability and validity of the original paper-and-pencil measure. We propose to leverage this
innovation to optimize both face-to-face and mHealth treatment for AN. Our objectives are to: 1) develop the
mHealth intervention (with clinician and stakeholder input) and 2) establish feasibility, acceptability, and
preliminary effect size of our mHealth intervention using both clinician and patient data. To accomplish our
objectives, we will employ a computerized adaptive test coupled with machine learning algorithms, delivered
within our app to signal clinicians when their clients are at-risk for poor outcomes and relapse. Specific aims
include: 1) adapt our existing clinical tool to provide therapist support modules and patient mHealth messages;
2) conduct a preliminary randomized controlled trial (RCT) of our integrated assessment and mHealth
intervention tool
; 3) test preliminary mechanisms that lead to changes in AN symptoms. Given there is a
scarcity of specialty care for AN following acute treatment, yet 95% of adolescents have smart phones, the
proposed research is innovative and significant because it has the future potential to reduce relapse and
optimize existing community-delivered interventions for AN over the post-acute treatment window.
项目概要/摘要
神经性厌食症 (AN) 是所有精神疾病中死亡率最高的疾病,通常在青春期发病。
虽然基于家庭的干预措施对高达 75% 的 AN 青少年有效,但大约 30%
康复后会复发,迫切需要优化治疗并预防出院后复发。
为了改善 AN 青少年的治疗效果,我们的团队致力于满足这一迫切需求。
开发了一套数字工具,促进评估、风险预测和临床决策的科学发展
支持在急性后治疗窗口中使用,称为“厌食症恢复智能治疗(STAR)”。
STAR 使用尖端评估技术来缩短测试管理和机器学习来预测
然后通过易于使用的临床信息将这些信息返回给临床医生。
当用户输入的数据表明患者没有进展时,决策支持工具会提醒临床医生。
对于当前的应用程序,我们建议扩展 STAR 以测试在
我们的科学前提是跨诊断评估和临床决策。
STAR 套件中提供的支持工具将优化面对面的临床服务,并增加
适应性移动医疗干预将改善门诊治疗反应并减少青少年复发
我们之前的工作支持我们的科学前提。
研究为我们的预测评估工具的预测有效性和临床实用性提供了强有力的支持
与 ED 相关的精神障碍和恢复 然而,我们纸质项目的数量。
评估工具为 144,对于日常使用来说太长了。为了克服这一挑战,我们开发了一个。
手机应用程序使用计算机化自适应测试将评估时间缩短多达 50%,同时
我们建议利用这一点,保留原始纸笔测量的可靠性和有效性。
创新以优化 AN 的面对面治疗和移动医疗治疗。我们的目标是:1) 开发
移动健康干预(根据临床医生和利益相关者的意见)以及 2) 建立可行性、可接受性和
使用临床医生和患者数据来确定我们的移动医疗干预的初步效果大小。
目标,我们将采用计算机化自适应测试与机器学习算法相结合,交付
当他们的客户面临不良结果和复发的风险时,在我们的应用程序中向人群发出信号特定目标。
包括:1)调整我们现有的临床工具,以提供治疗师支持模块和患者移动医疗信息;
2) 对我们的综合评估和移动医疗进行初步随机对照试验 (RCT)
干预工具
; 3) 测试导致 AN 症状变化的初步机制。
AN 急性治疗后缺乏专业护理,但 95% 的青少年拥有智能手机,
拟议的研究具有创新性和意义,因为它具有减少复发和减少复发的未来潜力。
在急性后治疗窗口期优化现有社区提供的 AN 干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelsie Terese Forbush其他文献
Kelsie Terese Forbush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelsie Terese Forbush', 18)}}的其他基金
Smart Technology for Anorexia Nervosa Recovery: A Pilot Intervention for the Post-Acute Treatment of Anorexia Nervosa
神经性厌食症康复智能技术:神经性厌食症急性后治疗的试点干预
- 批准号:
10450116 - 财政年份:2021
- 资助金额:
$ 24.23万 - 项目类别:
Smart Technology for Anorexia Nervosa Recovery: A Pilot Intervention for the Post-Acute Treatment of Anorexia Nervosa
神经性厌食症康复智能技术:神经性厌食症急性后治疗的试点干预
- 批准号:
10656299 - 财政年份:2021
- 资助金额:
$ 24.23万 - 项目类别:
Smart Technology for Anorexia Nervosa Recovery: A Pilot Intervention for the Post-Acute Treatment of Anorexia Nervosa
神经性厌食症康复智能技术:神经性厌食症急性后治疗的试点干预
- 批准号:
10657002 - 财政年份:2021
- 资助金额:
$ 24.23万 - 项目类别:
Where do Eating Disorders belong in the Diagnostic Taxonomy?
饮食失调在诊断分类中属于什么位置?
- 批准号:
7321833 - 财政年份:2007
- 资助金额:
$ 24.23万 - 项目类别:
Where do Eating Disorders belong in the Diagnostic Taxonomy?
饮食失调在诊断分类中属于什么位置?
- 批准号:
7675252 - 财政年份:2007
- 资助金额:
$ 24.23万 - 项目类别:
Where do Eating Disorders belong in the Diagnostic Taxonomy?
饮食失调在诊断分类中属于什么位置?
- 批准号:
7494065 - 财政年份:2007
- 资助金额:
$ 24.23万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
- 批准号:
10724900 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
The Impact of Early Life Stress On Amygdala Circuitry And Chronic Excessive Aggression
早期生活压力对杏仁核回路和慢性过度攻击性的影响
- 批准号:
10729031 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
MULTIsite feasibility of MUSIc therapy to address Quality Of Life in Sickle cell disease (MULTI-MUSIQOLS)
MUSIC 疗法解决镰状细胞病生活质量问题的多部位可行性 (MULTI-MUSIQOLS)
- 批准号:
10728452 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别:
The impact of changes in social determinants of health on adolescent and young adult mental health during the COVID-19 pandemic: A longitudinal study of the Asenze cohort in South Africa
COVID-19 大流行期间健康社会决定因素的变化对青少年和年轻人心理健康的影响:南非 Asenze 队列的纵向研究
- 批准号:
10755168 - 财政年份:2023
- 资助金额:
$ 24.23万 - 项目类别: