Collaborative Research: Biomimetic Lubricants: Gels based on Biomolecules and Nanoparticles with Ultralow Coefficients of Friction
合作研究:仿生润滑剂:基于生物分子和纳米粒子的超低摩擦系数凝胶
基本信息
- 批准号:1034175
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lubricants play an integral role in the operation of several technologies and in biology, ranging from moving parts in machinery to the biolubrication of articular joints. The main purposes of a lubricant are to reduce friction and surface wear. We propose a collaborative project involving 3 faculty members fromTulane University and a faculty member from the University of Maryland, each bearing unique expertise required for the success of the project. The PI (N. Pesika) is a junior faculty in his 2nd year and was a postdoctoral associate in the Interface laboratory at UCSB working under the guidance of Dr. Israelachvili. In recent years, N. Pesika has done theoretical and experimental work to understand the adhesion mechanism of the gecko and has become proficient in tribology and the characterization of lubricants. V. John is a senior faculty member with experience in the field of surface and colloidal science, specifically in the synthesis and modification of colloids. H. Ashbaugh's research focuses on the multiscale simulation and the theory of self assembly processes of molecules including surfactants, polymer melts, and biopolymer gels. S. Raghavan heads the complex fluid and nanomaterials group at the University of Maryland, and is an authority on self-assembling soft materials. We have found that an easily synthesized system of monodisperse hard carbon submicron spherical particles (HCS) has frictional coefficients that start approaching those of synovial fluids. When these observations are coupled with a novel discovery in S. Raghavan's laboratory that a modified biopolymer (chitosan) is able to gel vesicles, we are able to realize a unique gel system containing the carbon microspheres serving as nodes in a network of this biopolymer. This forms the basis of our proposed work to develop novel gel based lubricants containing monodisperse particles or cushioning vesicles. Our hypothesis is that these composite materials will be able to reduce friction and minimize surface wear synergistically through the boundary lubrication of biomolecules/biopolymers and the rolling mechanism (similar to ball bearings) employed by HCS particles. We therefore propose to develop biomimetic lubricants with ultralow coefficients of friction that are robust and easy to synthesize. Several formulations composed of phospholipid based liposomes, biopolymers and carbon microspheres will be systematically explored to optimize the lubrication properties, including a low coefficient of friction and minimal surface wear, through molecular and particulate design.Broader Impacts of research: While several types of lubricants have been formulated water-based lubricants that mimic synovial fluid remain elusive. A biomimetic lubricant exhibiting ultralow coefficient of friction has several applications including potential substitutes for synovial fluid in diseased or damaged articular joints or in applications to microfluidics or microelectromechanical devices. The potential scientific impact is extremely broad, affecting all industries utilizing lubricants.Broader Educational and Outreach efforts: N. Pesika and H. Ashbaugh are committed to improving local K-12 education and have established a service learning course at the New Orleans Charter Science and Mathematics (NOCSM) High School. The demography of the school closely parallels that of the community, with 85% being from households classified as economically disadvantaged, and 86% of the student population belonging to a minority (82% African American). The outreach program was designed to present every day uses of the scientific method through presentation made by Tulane students followed up with experiments to illuminate the nature of the demonstrated phenomenon, like the rheological properties of biopolymers and the operation of heat engines. V. John has been a consistent participant of the LAMP (Louisiana Alliance for Minority Participation in Research) program for the last 8 years supervising one or two students every summer while N. Pesika will begin participation in the LAMP program over the summer. These minority students are typically from the minority institutions in the state (Xavier, Southern, Grambling State) or from non-minority New Orleans institutions including Tulane. We plan to apply for REU supplements which will be leveraged through the LAMP program.
润滑剂在多种技术和生物学的操作中发挥着不可或缺的作用,从机械的运动部件到关节的生物润滑。润滑剂的主要目的是减少摩擦和表面磨损。我们提出了一个合作项目,涉及杜兰大学的 3 名教职人员和马里兰大学的一名教职人员,每个人都拥有项目成功所需的独特专业知识。 PI (N. Pesika) 是一名大二的初级教师,曾在 UCSB 接口实验室担任博士后,在 Israelachvili 博士的指导下工作。近年来,N. Pesika 进行了理论和实验工作,以了解壁虎的粘附机制,并精通摩擦学和润滑剂的表征。 V. John 是一位高级教员,在表面和胶体科学领域,特别是在胶体的合成和改性方面拥有丰富的经验。 H. Ashbaugh 的研究重点是多尺度模拟和分子自组装过程理论,包括表面活性剂、聚合物熔体和生物聚合物凝胶。 S. Raghavan 是马里兰大学复杂流体和纳米材料小组的负责人,是自组装软材料方面的权威。 我们发现,一种易于合成的单分散硬碳亚微米球形颗粒(HCS)系统的摩擦系数开始接近滑液的摩擦系数。当这些观察结果与 S. Raghavan 实验室的一项新发现相结合时,即改性生物聚合物(壳聚糖)能够凝胶囊泡,我们能够实现一种独特的凝胶系统,其中包含碳微球,作为该生物聚合物网络中的节点。这构成了我们提出的开发含有单分散颗粒或缓冲囊泡的新型凝胶基润滑剂的工作的基础。 我们的假设是,这些复合材料将能够通过生物分子/生物聚合物的边界润滑和 HCS 颗粒采用的滚动机制(类似于滚珠轴承)协同减少摩擦并最大限度地减少表面磨损。因此,我们建议开发具有超低摩擦系数、坚固且易于合成的仿生润滑剂。将系统地探索由磷脂基脂质体、生物聚合物和碳微球组成的几种配方,以通过分子和颗粒设计来优化润滑性能,包括低摩擦系数和最小表面磨损。研究的更广泛影响:虽然几种类型的润滑剂已经模仿滑液的水基润滑剂仍然难以捉摸。具有超低摩擦系数的仿生润滑剂具有多种应用,包括患病或受损关节中滑液的潜在替代品或微流体或微机电装置的应用。潜在的科学影响极为广泛,影响所有使用润滑油的行业。 更广泛的教育和推广工作:N. Pesika 和 H. Ashbaugh 致力于改善当地的 K-12 教育,并在新奥尔良特许科学与技术学院建立了服务学习课程。数学(NOCSM)高中。学校的人口结构与社区的人口结构非常相似,85% 的学生来自经济困难家庭,86% 的学生属于少数族裔(82% 为非裔美国人)。该推广计划旨在通过杜兰大学学生的演示来展示科学方法的日常使用,随后进行实验来阐明所展示现象的本质,例如生物聚合物的流变特性和热机的运行。过去 8 年,V. John 一直是 LAMP(路易斯安那州少数民族参与研究联盟)计划的坚定参与者,每年夏天指导一到两名学生,而 N. Pesika 将在今年夏天开始参与 LAMP 计划。这些少数族裔学生通常来自该州的少数族裔院校(泽维尔、南方、格兰布林州立大学)或来自包括杜兰大学在内的新奥尔良非少数族裔院校。我们计划申请 REU 补助,这些补助将通过 LAMP 计划加以利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noshir Pesika其他文献
Adhesion and friction of an isolated gecko setal array: The effects of substrates and relative humidity
孤立壁虎组阵列的粘附和摩擦:基质和相对湿度的影响
- DOI:
10.1016/j.bsbt.2015.02.002 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dashuai Tao;Jin Wan;Noshir Pesika;Hongbo Zeng;Zheyu Liu;Xiangjun Zhang;Yonggang Meng;Yu Tian - 通讯作者:
Yu Tian
Noshir Pesika的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noshir Pesika', 18)}}的其他基金
RII Track-4: NSF: Self-healing Modular Panels for Space and Lunar Missions
RII Track-4:NSF:用于太空和月球任务的自愈模块化面板
- 批准号:
2327424 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
RII Track-4: NSF: Self-healing Modular Panels for Space and Lunar Missions
RII Track-4:NSF:用于太空和月球任务的自愈模块化面板
- 批准号:
2327424 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
I-Corps: High Lubricity Biomimetic Meniscus
I-Corps:高润滑性仿生半月板
- 批准号:
2029961 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Porous Polymeric films with Ultra-low Coefficient of Friction
具有超低摩擦系数的多孔聚合物薄膜
- 批准号:
1301286 - 财政年份:2013
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
基于仿生学视角的蛋黄中铁的转运、吸收分子机制研究
- 批准号:32301979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性植物器官的生物力学与仿生学研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于仿生学视角的蛋清(Ca2+)-EEWNPs螯合及促钙吸收机理研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
叩甲科爆发式弹跳运动的功能形态学及仿生学研究
- 批准号:32270483
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于仿生学非线性超材料点阵夹芯结构振动与噪声控制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323414 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Predicting the Mechanical Properties of Biomimetic Apatite Crystals Due to Co and Cr Ion Substitutions
合作研究:预测因 Co 和 Cr 离子取代而产生的仿生磷灰石晶体的机械性能
- 批准号:
2323500 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Predicting the Mechanical Properties of Biomimetic Apatite Crystals Due to Co and Cr Ion Substitutions
合作研究:预测因 Co 和 Cr 离子取代而产生的仿生磷灰石晶体的机械性能
- 批准号:
2323499 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Computational Examination of Biomimetic Peptides Acting as Anti-freeze Molecules
合作研究:仿生肽作为抗冻分子的实验和计算检验
- 批准号:
2203527 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Standard Grant