CMG Collaborative Research: Ocean Modeling by Bridging Primitive and Boussinesq Equations
CMG 合作研究:通过连接原始方程和 Boussinesq 方程进行海洋建模
基本信息
- 批准号:1025314
- 负责人:
- 金额:$ 20.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While vast regions of the ocean can be treated accurately within the framework of eddy-resolving ocean models integrating simplified equations, there are comparatively small regions in which rapidly-evolving three dimensional motions are important not only for local but also for large-scale dynamics, thereby playing an important role in the multi-scale dynamics of both coastal and global oceanic flows. The flow dynamics in these small regions are complex enough not to permit an accurate approximation by simple parameterizations, but rather demand solution of the full set of equations. The objective of this project is to build a modeling framework which can handle both energetically active motions and large scale general circulations simultaneously. This research-education project is an orchestrated effort of a collaboration synthesizing expertise in both mathematics and oceanography. The blend of mathematical, computational, and geophysical expertise of the project team is central to the success of this endeavor. It is also essential to the truly interdisciplinary training of graduate and undergraduate students, who will be involved in all the stages of a research project: Modeling, mathematical analysis, discretization, validation, computation, and data analysis.To model these challenging oceanic flows, a truly multi-scale modeling framework that will employ the computationally intensive Boussinesq equations only in the small regions of intense mixing and the computationally efficient primitive equations in the rest of the fluid domain is needed. The inherent multi-scale nature of the oceanic flows considered, however, makes the development of such a modeling framework challenging, both mathematically and computationally. Indeed, one needs to address outstanding open questions, such as, the mathematical bridging of two different systems of equations, the interfacing of computational meshes of vastly varying resolutions, the quantification and modeling of uncertainty in this complex framework and the modeling of oceanic flows over a range of scales where forward and backward energy cascades coexist. This new framework comprises several significant mathematical and computational developments: (i) a new multiphysics/multiresolution modeling approach based on domain decomposition that will allow an appropriate treatment of highly varying mesh resolutions and the interfacing of the non-hydrostatic and hydrostatic flow regimes; (ii) a novel spatio-temporal filtering methodology that provides an elegant mathematical approach for bridging two different sets of equations by creating a spectrum of intermediate models filling the gap between the two sets of equations in terms of computational efficiency and physical accuracy; (iii) new modeling strategies for the uncertainty in the system generated by the inherently stochastic nature of the Boussinesq-primitive equations coupling; and (iv) state-of-the-art turbulence modeling for an appropriate treatment of the markedly different turbulence character of the Boussinesq and primitive flow regimes by taking advantage of the mathematical nature of approximate deconvolution approaches.
虽然可以在整合简化方程的涡旋解析海洋模型框架内准确处理海洋的广大区域,但在相对较小的区域中,快速演变的三维运动不仅对于局部动力学而且对于大规模动力学都很重要,从而在沿海和全球海洋流的多尺度动力学中发挥着重要作用。这些小区域中的流动动力学非常复杂,不允许通过简单的参数化进行精确近似,而是需要求解全套方程组。该项目的目标是建立一个能够同时处理活跃运动和大规模大气环流的建模框架。该研究教育项目是综合数学和海洋学专业知识的协作努力。项目团队的数学、计算和地球物理专业知识的融合对于这项工作的成功至关重要。这对于研究生和本科生的真正跨学科培训也至关重要,他们将参与研究项目的所有阶段:建模、数学分析、离散化、验证、计算和数据分析。为了对这些具有挑战性的海洋流动进行建模,需要一个真正的多尺度建模框架,该框架仅在强烈混合的小区域中采用计算密集型布辛涅斯克方程,而在流体域的其余部分中采用计算高效的原始方程。然而,所考虑的海洋流固有的多尺度性质使得这种建模框架的开发在数学和计算上都具有挑战性。 事实上,我们需要解决一些悬而未决的问题,例如两个不同方程组的数学桥接、分辨率差异很大的计算网格的接口、这一复杂框架中不确定性的量化和建模以及海洋流量的建模。前向和后向能量级联共存的一系列尺度。 这个新框架包括几个重要的数学和计算发展:(i)基于域分解的新的多物理场/多分辨率建模方法,该方法将允许适当处理高度变化的网格分辨率以及非静水流和静水流状态的接口; (ii) 一种新颖的时空过滤方法,它提供了一种优雅的数学方法,通过创建一系列中间模型来弥合两组不同的方程组,从而填补两组方程组在计算效率和物理精度方面的差距; (iii) 针对布辛涅斯克-原方程耦合的固有随机性所产生的系统不确定性的新建模策略; (iv) 最先进的湍流建模,通过利用近似反卷积方法的数学性质,适当处理 Boussinesq 和原始流态的明显不同的湍流特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Traian Iliescu其他文献
Traian Iliescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Traian Iliescu', 18)}}的其他基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012253 - 财政年份:2020
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Data-Driven Computation of Lagrangian Transport Structure in Realistic Flows
现实流动中拉格朗日输运结构的数据驱动计算
- 批准号:
1821145 - 财政年份:2018
- 资助金额:
$ 20.83万 - 项目类别:
Continuing Grant
Collaborative Research: Reduced Order Modeling of Realistic Noisy Flows
协作研究:现实噪声流的降阶建模
- 批准号:
1522656 - 财政年份:2015
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
CMG Collaborative Research: A New Modeling Framework for Nonhydrostatic Simulations of Small-Scale Oceanic Processes
CMG 协作研究:小规模海洋过程非静水力模拟的新建模框架
- 批准号:
0620464 - 财政年份:2006
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Scientific Computing Research Environment for the Mathematical Sciences (SCREMS)
数学科学科学计算研究环境 (SCREMS)
- 批准号:
0322852 - 财政年份:2003
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Collaborative Research: Three-Dimensional Numerical Investigation of Density Currents
合作研究:密度流的三维数值研究
- 批准号:
0209309 - 财政年份:2002
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1460319 - 财政年份:2014
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
- 批准号:
1025166 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1025417 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
- 批准号:
1024936 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
- 批准号:
1025453 - 财政年份:2010
- 资助金额:
$ 20.83万 - 项目类别:
Standard Grant