NetSE: Large: Collaborative Research: Exploiting Multi-Modality for Tele-Immersion

NetSE:大型:协作研究:利用多模态实现远程沉浸

基本信息

  • 批准号:
    1012194
  • 负责人:
  • 金额:
    $ 36.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

Providing an environment that offers both immersion and interaction is a tough research challenge. Ensuring a reasonable Quality of Experience (QoE) in using these environments installed in geographically distributed cities is even a tougher challenge. This project considers a collaborative, immersive, and interactive environment that not only supports 3D rendering of the participants? video but also other modalities such as Body Sensor Network (BSN) data that can offer highly precise data about a person?s physical movements (as well as physiological data). While creating this environment, one needs to consider the various bottlenecks that choke the data streams carrying the immersive and interactive information: reconstruction delay, ultra-high throughput needed, packet loss, and rendering delays. The main aim of this project is to design and develop collaborative, multi-modal immersive environments with higher frame rates and frame quality by carrying out research tasks that can take advantage of information from other modalities and handle these bottlenecks.In a typical tele-immersive environment, participants can see themselves in the locally rendered 3D view and see participants in the remote environments as well. Since the local rendering delays are much smaller, participants can see themselves earlier and in a more smooth fashion compared to the rendering of remote participants that suffers from communication delays and packet losses. This aspect of varying delays among the immersive participants can potentially cause problems during dynamic interactions and affect their QoE. Answers to questions such as what type of problems can be caused and how the participants handle them depend on the application domain of the immersive environments. To study the QoE and validate (with usability studies) the collaborative, immersive environment, a tele-rehabilitation application will be deployed in multiple cities: Berkeley, California; 2 sites in Dallas, Texas; and Urbana-Champaign, Illinois. Intellectual Merits of this project are (i) The resource adaptation framework for streaming multi-source, multi-destination, multi-rate, multi-modal data incorporates supervisory hybrid control theory based fine-grained resource management, multi-modal coarse-grained management, and a multi-modal multicasting approach. (ii) Graphics Processing Unit (GPU)-based 3D reconstruction and compression algorithms. These algorithms facilitate reconstruction of 3D data points based on 3D camera array data and compress them at a faster pace than their CPU-based counterparts. (iii) GPU-based rendering algorithm of 3D data on the receiver side. This algorithm will handle potential data loss in 3D camera data streams using skeletal information from BSN data streams. (iv) Identification and measurement of Quality of Experience (QoE) metrics and using those metrics to derive Quality of Service (QoS) parameters. The derived QoS parameters will then help the resource adaptation framework to modify its decisions at run-time. This project aims to have transformative aspects in the new set of algorithms that exploits multi-modality while incorporating a feedback based on Quality of Experience for functions such as streaming, 3D reconstruction, and rendering.Broader Impacts: This project promises significant impact in the fields of education and pervasive health care by providing augmented abilities to carry out intricate programs such as tele-rehabilitation with increased correctness and flexibility. This can also lead to improved productivity in the society considering the ability of health-care professionals to potentially handle a larger population (in remote places) as well as considering the possibility of the affected persons to become independent and productive faster. The project also ensures the results from the proposed research will be incorporated into the courses being taught. 3 women PhD students and 6 under-graduate students (2 are minority students) already working with the investigators of this project. Serious efforts will be undertaken to continue their involvement in this project. Apart from refereed conference and journal publications, the developed software, collected data, and research results will be shared with other researchers through a dedicated website (after ensuring satisfaction of HIPAA regulations).
提供一个兼具沉浸感和互动性的环境是一项艰巨的研究挑战。确保在使用安装在地理分散的城市中的这些环境时获得合理的体验质量 (QoE) 甚至是一项艰巨的挑战。这个项目考虑的是一个协作、沉浸式、交互式的环境,不仅支持参与者的 3D 渲染?视频以及其他形式,例如身体传感器网络 (BSN) 数据,可以提供有关人的身体运动(以及生理数据)的高精度数据。在创建这一环境时,需要考虑阻碍承载沉浸式交互信息的数据流的各种瓶颈:重建延迟、所需的超高吞吐量、丢包和渲染延迟。该项目的主要目的是通过执行研究任务来设计和开发具有更高帧速率和帧质量的协作、多模式沉浸式环境,这些任务可以利用来自其他模式的信息并处理这些瓶颈。环境中,参与者可以在本地渲染的 3D 视图中看到自己,也可以看到远程环境中的参与者。由于本地渲染延迟要小得多,因此与遭受通信延迟和数据包丢失的远程参与者的渲染相比,参与者可以更早、更流畅地看到自己。沉浸式参与者之间不同延迟的这一方面可能会在动态交互过程中引起问题并影响他们的 QoE。诸如可能引起什么类型的问题以及参与者如何处理这些问题等问题的答案取决于沉浸式环境的应用领域。为了研究 QoE 并验证(通过可用性研究)协作、沉浸式环境,远程康复应用程序将在多个城市部署:加利福尼亚州伯克利;德克萨斯州达拉斯有 2 个站点;和伊利诺伊州厄巴纳-尚佩恩。该项目的智力优点是(i)流式多源、多目的地、多速率、多模态数据的资源适应框架结合了基于监督混合控制理论的细粒度资源管理、多模态粗粒度管理,以及多模式多播方法。 (ii) 基于图形处理单元 (GPU) 的 3D 重建和压缩算法。这些算法有助于基于 3D 相机阵列数据重建 3D 数据点,并以比基于 CPU 的同行更快的速度压缩它们。 (iii)接收端基于GPU的3D数据渲染算法。该算法将使用 BSN 数据流中的骨架信息来处理 3D 相机数据流中潜在的数据丢失。 (iv) 识别和测量体验质量 (QoE) 指标,并使用这些指标来导出服务质量 (QoS) 参数。然后,导出的 QoS 参数将帮助资源适应框架在运行时修改其决策。该项目旨在在利用多模态的新算法中实现变革性的方面,同时结合基于体验质量的反馈来实现流、3D 重建和渲染等功能。 更广泛的影响:该项目有望在该领域产生重大影响通过提供增强的能力来执行复杂的计划,例如具有更高正确性和灵活性的远程康复,从而促进教育和普及医疗保健的发展。考虑到医疗保健专业人员有可能处理更多人口(在偏远地区),以及考虑到受影响的人更快地独立和生产力的可能性,这也可以提高社会生产力。该项目还确保拟议研究的结果将纳入所教授的课程中。 3 名女博士生和 6 名本科生(2 名少数民族学生)已与该项目的研究人员一起工作。我们将认真努力继续参与该项目。除了经过审阅的会议和期刊出版物外,开发的软件、收集的数据和研究结果将通过专门的网站与其他研究人员共享(在确保满足 HIPAA 法规后)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Klara Nahrstedt其他文献

Îáááç Ëìêêêåáaeae Çîîê Ìàà Èííäáá Áaeììêaeaeìì Åíäìáèää Ëëêáèìáçae Çççë Aeae Èìáîî Ìêêaeëèçêì Èêçìçççäë
Îáááç Ëìêêêåáaeae Çîîê Ìàà Èííäáá Áaeììêaeaeìì
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Klara Nahrstedt
  • 通讯作者:
    Klara Nahrstedt
Challenges in Metaverse Research: An Internet of Things Perspective
元宇宙研究的挑战:物联网视角
SAVG360: Saliency-aware Viewport-guidance-enabled 360-video Streaming System
SAVG360:支持显着性视口引导的 360 度视频流系统
Performance of detection statistics under collusion attacks on independent multimedia fingerprints
独立多媒体指纹共谋攻击下的检测统计性能
  • DOI:
    10.1109/icme.2003.1220890
  • 发表时间:
    2003-07-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thinh Nguyen;Puneet Mehra;A. Zakhor;Susie Wee;John G. Apostolopoulos;Wai;S. Roy;Jacob Chakareski;Eric Setton;Yi Liang;Bernd Girod;M. Fumagalli;Cefriel;Italy;P. Sagetong;Antonio Ortega;Amy Reibman;V. Vaishampayan;Rémi Ronfard;Tien Tran Thuong;France Inria;Xiaofei He;Adam Berenzweig;Daniel P W Ellis;Tong Zhang;M. Boutell;Yeow Kee Tan;N. Sherkat;Tony Allen;Y. Sawahata;Kiyoharu Aizawa;Timothy T H Chen;Sidney Fels;Sarah Saehee;Min;Xin Fan;China;Xing Xie;Wei;Hong;Björn Schuller;M. Zobl;G. Rigoll;Manfred Lang;Hsuan;Shrikanth S Narayanan;C.;Rongshan Yu;Xiao Lin;S. Rahardja;Simon Lucey;Tsuhan Chen;M. Reyes;Chih;Sau;Yongmin Li;Li;Geoff Morrison;Charles Nightingale;J. Morphett;Jun;John Zhang;Jagath Chen;Samarab;u;u;S. H. Srinivasan;M. Kankanhalli;Wei;Hasan Ates;Andy Chang;Oscar C. Au;Ming Yeung;Hong Kong;Gulcin Caner;Yu Hen Hu;Rajas A. Sambhare;N. Bellas;M. Dwyer;Tay;Chin;Tsung;Yu;Chien;Chen;Hung;C. Jen;Satoshi Nishiguchi;Kazuhide Higashi;Y. Kameda;Tsung;Wen;Chun;Hung;Tu;Yu;Ya;Liang;Jongmyon Kim;Scott Wills;Michelle Yan;J. Shaw;Shinsuke Kobayashi;Kentaro Mita;Yoshinori Takeuchi;Ioannis Andreou;N. Sgouros;Michael Lee;Surya Nepal;Uma Srinivasan;Csiro;Australia;Gees Stein;J. Rittscher;A. Hoogs;H. Nagano;K. Kashino;Hiroshi Murase;Ahmet Ekin;Amit Chakraborty;P. Liu;L. Hsu;Lijun Yin;Sergey Royt;Francis Quek;Yingen Xiong;Haitao Zheng;J. Taal;I. Haratcherev;K. Langendoen;T. Stockhammer;Jie Chen;S. Hsia;Trista Pei;Hong Zhao;Min Wu;Z. J. Wang;K. Liu;A. Giannoula;A. Tefas;N. Nikolaidis;I. Pitas;M. Fu;N. Cvejic;D. Tujkovic;T. Seppänen;Jonathan Foote;John Adcock;Andreas Girgensohn;S. Mallick;Mohan Trivedi;Inmaculada Rodríguez;Manuel Peinado;Cha Zhang;Yuzhong Shen;K. Barner;Yong;Jang;Dae;Jong;Wende Zhang;Thang Viet Nguyen;Ch;ra Patra;ra;Ee;Wei Wang;Aidong Zhang;S. Palanivel;B. Venkatesh;B. Yegnanarayana;Dong;Michael R. Lyu;D. Trossen;Hemant Chaskar;Shengjie Zhao;Zixiang Xiong;A. Bhatkar;R. Ch;ramouli;ramouli;Wen Xu;S. Hemami;Wanghong Yuan;Klara Nahrstedt;Jiancong Chen;S.;Jieh Hsiang;Wen;Bee;Hsieh;J. Assfalg;A. Bimbo;P. Pala;Xiangdong Zhou;Qi Zhang;Jun Gao;G. Tzanetakis;P. Steenkiste;Lei Zhang;Yu;Xin Huang;Shu;Minghong Pi;Mrinal M;al;al;Anup Basu;G. Iyengar;H. Nock;C. Neti;Min Xu;Ling;Chang Xu;Qi Tian;Ching;Shao;Yi;Yu;A. Pinho;Antonio Neves;Nejat Kamaci;Y. Altunbasak;Xiaodong Gu;Microsoft Research;Asia;Yung;Ming;Yu;Martin Boliek;Kok Wu;Shou;Liang Zhang;Yuhua Ding;G. Vachtsevanos;Anthony Yezzi;Wayne Daley;Bonnie Heck;Chuo;P. Ramanathan;Xiaoqing Zhu;Christian Ritz;Ian Burnett;J. Lukasiak;H. Zarrinkoub;Om Deshmukh;Carol Y. Espy;K. S. Rao;Arun Kumar;Xiaodong He;Dong Wang;J. Pinquier;Jean;R. André;France Top;Mohammed Chalil;Sreekumar K P;Manoj Sankar;A. Raouzaiou;K. Karpouzis;S. Kollias;Ghassan Al;Magy Seif El;I. Horswill;Son Tran;Raghavendra Singh;Ravi Kothari;M. Naphade;States Apostol;Paul Natsev;Belle L. Tseng;John R Smith;Shinsuke Nakajima;Apostol;W. Kumwilaisak;Research Asia;Bo Shen;Sheau;Chun;Rajeev Kumar;Nam Pham;Ngoc;K. Leuven;Belgium;G. Lafruit;J. Mignolet;S. Vernalde;G. Deconinck;Rudy Lauwereins;Belgium Top;Pun;Tien;Amit Kale;Roy Chowdhury;Sarah John
  • 通讯作者:
    Sarah John
DARTS: Distributed IoT Architecture for Real-Time, Resilient and AI-Compressed Workflows
DARTS:用于实时、弹性和人工智能压缩工作流程的分布式物联网架构

Klara Nahrstedt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Klara Nahrstedt', 18)}}的其他基金

Collaborative Research: Conference: NSF Workshop Sustainable Computing for Sustainability
协作研究:会议:NSF 可持续计算可持续发展研讨会
  • 批准号:
    2334854
  • 财政年份:
    2023
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CC* Integration-Large: MAINTLET: Advanced Sensory Network Cyber-Infrastructure for Smart Maintenance in Campus Scientific Laboratories
CC* 大型集成:MAINTLET:用于校园科学实验室智能维护的先进传感网络网络基础设施
  • 批准号:
    2126246
  • 财政年份:
    2021
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: miVirtualSeat: Semantics-aware Content Distribution for Immersive Meeting Environments
协作研究:CNS 核心:媒介:miVirtualSeat:用于沉浸式会议环境的语义感知内容分发
  • 批准号:
    2106592
  • 财政年份:
    2021
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Augmented 360 Video for Situation Awareness in Firefighting
EAGER:协作研究:用于消防态势感知的增强型 360 度视频
  • 批准号:
    2140645
  • 财政年份:
    2021
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Collaborative Research: Scalable Dissemination and Navigation of Video 360 Content for Personalized Viewing
CNS 核心:媒介:协作研究:视频 360 内容的可扩展传播和导航以实现个性化观看
  • 批准号:
    1900875
  • 财政年份:
    2019
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
CC* Integration: SENSELET: Sensory Network Infrastructure for Scientific Laboratory Environments
CC* 集成:SENSELET:科学实验室环境的传感网络基础设施
  • 批准号:
    1827126
  • 财政年份:
    2018
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Algorithms for Smartphone Peer-to-Peer Networks
AiTF:协作研究:智能手机点对点网络算法
  • 批准号:
    1733872
  • 财政年份:
    2017
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CC*Integration: BRACELET: Robust Cloudlet Infrastructure for Scientific Instruments' Lifetime Connectivity
CC*Integration:BRACELET:用于科学仪器终身连接的强大 Cloudlet 基础设施
  • 批准号:
    1659293
  • 财政年份:
    2017
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: T2-C2: Timely and Trusted Curator and Coordinator Data Building Blocks
CIF21 DIBB:T2-C2:及时且值得信赖的策展人和协调员数据构建块
  • 批准号:
    1443013
  • 财政年份:
    2014
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
Security for Cloud Computing - NSF Workshop
云计算安全 - NSF 研讨会
  • 批准号:
    1213373
  • 财政年份:
    2012
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant

相似国自然基金

深海大尺度异种钛合金环肋柱壳的失效破坏机理及安全性评估方法研究
  • 批准号:
    52371282
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
  • 批准号:
    42302189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于端到端协同设计的宽光谱大视场编码掩膜成像方法研究
  • 批准号:
    62305183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大尺寸砷化硼电声输运的缺陷调制机理研究
  • 批准号:
    62304031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于大环AIE配体的币金属簇基MOFs的构筑及分子识别研究
  • 批准号:
    22301283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NetSE: Large: Collaborative Research: Platys: From Position to Place in Next Generation Networks
NetSE:大型:协作研究:Platys:从下一代网络中的位置到地方
  • 批准号:
    1430064
  • 财政年份:
    2013
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
NetSE: Large: Collaborative Research: Contagion in Large Socio-Communication Networks
NetSE:大型:协作研究:大型社会通信网络中的传染
  • 批准号:
    1010789
  • 财政年份:
    2010
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
NetSE: Large: Collaborative Research: Contagion in large socio-communication networks
NetSE:大型:协作研究:大型社会通信网络中的传染
  • 批准号:
    1010904
  • 财政年份:
    2010
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
NetSE:Large:Collaborative Research: Exploiting Multi-modality for Tele-Immersion
NetSE:大型:协作研究:利用多模态实现远程沉浸
  • 批准号:
    1012975
  • 财政年份:
    2010
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Continuing Grant
NetSE: Large: Collaborative Research:Contagion in Large Socio-Communication Networks
NetSE:大型:协作研究:大型社会通信网络中的传染
  • 批准号:
    1010921
  • 财政年份:
    2010
  • 资助金额:
    $ 36.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了