AF: :Small: Parallel Transient Solvers for Multiscale Electromagnetics Simulation

AF: :Small:用于多尺度电磁仿真的并行瞬态求解器

基本信息

  • 批准号:
    1018516
  • 负责人:
  • 金额:
    $ 49.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This proposal seeks to answer a growing engineering need: the development of robust computationally efficient methods to analyze transient radiation and scattering from electrically large multiscale objects. The proposed work can be categorized into two interrelated areas: (i) building parallel transient potential evaluators for computing interactions between random non-uniform source/observer pairs wherein separation between two points ranges from a millionth to a thousand of the minimum wavelength; (ii) development of parallel time domain higher-order integral equation solvers that include these potential integrators. The four-fold objectives of this proposal are as follows: (i) rigorous methods that can be integrated with the plane wave time domain (PWTD) algorithm to extend its applicability to the quasi-static regime; (ii) windowed operators that will morph PWTD with beams; (iii) parallel, multiscale, fast potential evaluators that include the above developments; and (iv) integration of these into time domain integral equation solvers. To realize these objectives, advances will be made on two fronts: (i) numerical methods to effect these operations with a proper understanding of error bounds and the means to control them; and (ii) parallel algorithms that are provably scalable. The design and analysis of realistic devices is the holy grail of any computational endeavor. The same is true of Maxwell solvers. As Maxwell's equations form the foundation to a wide array of modern technology, methods developed to efficiently and accurately solve these equations can have wide ranging impact. To date, simulation tools have been complementary to, but have not supplanted experiments. The principal challenge has been bottlenecks posed by complex structural topologies with fine features, embedded in electrically large structures. Our goal-to enable the analysis of field deployable systems-will be realized by making advances in both the underlying numerics and parallel algorithms. These, in turn, will enable transition of this technology from tens of processors to thousands and tens of thousands of processors. Methods developed will yield a robust, accurate, and adaptable code that can be widely adopted in multiple domains in electromagnetics, acoustics, plasma dynamics, etc. To ensure dissemination, the PIs will work with practitioners in industry as well as with the Michigan Center for Industrial and Applied Mathematics. Existing channels in recruitment at MSU and ISU will be utilized to encourage participation by women and minorities. Undergraduate students will be involved through senior design projects and potentially through REU supplements. Additionally, a post-doctoral scholar will be mentored in all aspects necessary to be a successful academic.
该提案旨在满足日益增长的工程需求:开发强大的计算有效方法,以分析电气大型多尺度对象的瞬态辐射和散射。提出的工作可以分为两个相互关联的区域:(i)构建平行的瞬态潜在评估者,以计算随机不均匀的源/观察者对之间的相互作用,其中两个点之间的分离范围从三分之一到千的最小波长范围范围; (ii)开发并行时域高阶方程求解器,其中包括这些潜在的集成器。该提案的四倍目标如下:(i)可以与平面波时域(PWTD)算法集成的严格方法,以将其适用性扩展到准静态状态; (ii)窗户的操作员将用梁变形pwtd; (iii)包含上述发展的平行,多尺度,快速潜在的评估者; (iv)将这些集成到时域积分方程求解器中。为了实现这些目标,将在两个方面取得进步:(i)对这些操作的数值方法,以正确理解误差范围和控制它们的手段; (ii)可证明可扩展的并行算法。 现实设备的设计和分析是任何计算努力的圣杯。麦克斯韦求解器也是如此。由于麦克斯韦的方程式构成了广泛的现代技术的基础,因此开发出旨在有效,准确地求解这些方程的方法可能会产生广泛的影响。迄今为止,仿真工具已经互补,但尚未取代实验。主要挑战是由具有精细特征的复杂结构拓扑构成的,这些拓扑构成了电气大型结构。 我们的目标可以通过在基础数字和并行算法中取得进步来实现对现场可部署系统的分析。反过来,这些将使这项技术从数十种处理器过渡到成千上万的处理器。开发的方法将产生强大,准确和适应性的代码,该代码可以在电磁,声学,等离子动力学等多个领域中广泛采用,以确保传播,PIS将与行业的从业者以及密歇根州的工业和应用数学中心合作。 现有在MSU和ISU招聘的渠道将用于鼓励妇女和少数民族参与。本科生将通过高级设计项目和REU补充剂参与其中。此外,将在成功的学术中所必需的各个方面进行指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanker Balasubramaniam其他文献

Stable and Accurate Marching-on-in-Time Solvers of Time Domain EFIE, MFIE, and CFIE Based on Quasi-Exact Integration Technique
基于准精确积分技术的时域EFIE、MFIE和CFIE稳定准确的时间步进求解器
  • DOI:
    10.1109/tap.2020.3026867
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Wang Xin;Shi Yifei;Lu Mingyu;Shanker Balasubramaniam;Michielssen Eric;Bagci Hakan
  • 通讯作者:
    Bagci Hakan

Shanker Balasubramaniam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanker Balasubramaniam', 18)}}的其他基金

Subdivision Based Isogeometric Analysis driven Electro-Acoustic Design
基于细分的等几何分析驱动的电声设计
  • 批准号:
    1725278
  • 财政年份:
    2017
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
An Adaptive and Robust Discrete Geometry Based Helmholtz Solver and Applications to Device Design
基于亥姆霍兹求解器的自适应鲁棒离散几何及其在设备设计中的应用
  • 批准号:
    1250261
  • 财政年份:
    2012
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
Fast and Accurate Integral Equation Solvers for Mixed-scale Electromagnetic Simulation
用于混合尺度电磁仿真的快速准确积分方程求解器
  • 批准号:
    0811197
  • 财政年份:
    2008
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
Collaborative Research: PACE-Parallel Accelerated Cartesian Expansions with Application to Molecular Dynamics
合作研究:PACE 并行加速笛卡尔展开式及其在分子动力学中的应用
  • 批准号:
    0729157
  • 财政年份:
    2007
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
NER: Nanowire Based Plasmonic Bioprobes/sensors
NER:基于纳米线的等离子体生物探针/传感器
  • 批准号:
    0609192
  • 财政年份:
    2006
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Parallel Hybrid Differential and Integral Equation Based Solvers for Time Domain Electromagnetic Analysis with Application to High-Speed Circuits
合作研究:基于并行混合微分方程和积分方程的求解器,用于时域电磁分析及其在高速电路中的应用
  • 批准号:
    0306436
  • 财政年份:
    2003
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
  • 批准号:
    32370966
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Efficient Massively Parallel Algorithms
合作研究:AF:小型:高效大规模并行算法
  • 批准号:
    2218677
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Efficient Massively Parallel Algorithms
合作研究:AF:小型:高效大规模并行算法
  • 批准号:
    2218678
  • 财政年份:
    2022
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
AF: Small: New Directions for Parallel Data Structures
AF:小:并行数据结构的新方向
  • 批准号:
    2103483
  • 财政年份:
    2021
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Parallel Reinforcement Learning with Communication and Adaptivity Constraints
协作研究:AF:小型:具有通信和适应性约束的并行强化学习
  • 批准号:
    2006526
  • 财政年份:
    2020
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Parallel Reinforcement Learning with Communication and Adaptivity Constraints
协作研究:AF:小型:具有通信和适应性约束的并行强化学习
  • 批准号:
    2006591
  • 财政年份:
    2020
  • 资助金额:
    $ 49.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了