Collaborative Research: AF: Small: Efficient Massively Parallel Algorithms

合作研究:AF:小型:高效大规模并行算法

基本信息

  • 批准号:
    2218677
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Modern computing systems have moved beyond single-coresingle-processor devices to more modern multicore processors operatingin networked systems and available in warehouse-scale cloudspopularized by companies such as Amazon or Google. Future advances incomputing power will likely come not mainly from faster devices, butby processing in inherently parallel and distributed environments, andby understanding how to exploit the parallelism inherent in manyalgorithmic problems. Simultaneously, the world has entered the era of``big data'' with large data sets on which previously unthinkablesized problems with great economic and social impact need to besolved. This new parallel, interconnected, big-data world speciallyrequires fundamental research on their algorithms, which are bothparallel and distributed.The algorithms in this project address thisimportant research challenge by building and developing new generalframeworks for massively parallel computation.As the main thrust of this project, the investigators will designfundamental and efficient algorithms for core massively parallelcomputations especially in the practical Massively ParallelComputation (MPC) framework. In particular, they will consider methodsfor reducing the number of rounds in the MPC model as well astradeoffs between rounds, memory, number of machines, andcommunication time. They seek to find new MPC algorithms for basicgraph problems such as connectivity, matching, vertex cover, maximalindependent set, as well as other basic string matching problems suchas suffix trees, edit distance, and longest commonsubsequence. Another focus is dynamic algorithms for massivelyparallel computation, which modify the output efficiently in aparallel/distributed setting based on frequent modifications of theinput and with direct applications in evolving social networks, theWorld Wide Web, road networks, scheduling systems among others. Theinvestigators will augmenting current parallelenvironments/architectures with better data structures andabstractions to allow simplified and fast implementations of thecurrent fundamental algorithms that can be used in practicevia open-source codes. The discoveries in this project will beintegrated into existing and new courses and books about parallelalgorithms, distributed algorithms, and foundations of big data. Thewealth of attractive open problems in these areas will provide bothchallenging research topics and intuitive accessible problems toinspire students to enter research in computer science andmathematics. In particular the project will involve Ph.D. students andpost-docs, undergraduate students, and even high-school students(especially students among minorities and women), many of whom willcontinue their research at other academic institutions and researchcenters, further broadening the impact of this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算系统已经超越了单台处理器设备,转移到了更现代的多核心处理器上,操作网络系统,并在诸如亚马逊或Google等公司的仓库规模的Cloudspopular中获得。未来的进步不构成能力可能不是主要来自更快的设备,Butby在固有的并行和分布式环境中进行处理,并理解如何利用许多Algorithmic问题固有的并行性。同时,全世界都进入了“ big数据”的时代,其中大量数据集以前不可想象的问题对经济和社会影响进行了巨大的影响,需要解决。这项新的平行,相互联系,大数据世界是对其算法的基础研究,它们都是比较和分布的。该项目中的算法解决了这一重要的研究挑战,通过构建和开发新的拼写器来建立新的拼写器,以进行大规模并行计算,这是该项目的主要推力,这是该项目的主要推力,这些项目将众多算法和有效的算法,并有效地构建了有效的算法。并行计算(MPC)框架。特别是,他们将考虑减少MPC模型中的回合数量的方法,以及在回合,内存,计算机数量和通信时间之间的AstradeOffs。他们试图为基本问题找到新的MPC算法,例如连接性,匹配,顶点封面,最大独立设置,以及其他基本的字符串匹配问题,例如后缀树,编辑距离和最长的CommonSubSequence。另一个重点是用于大规模比较计算的动态算法,它基于输入的频繁修改以及在不断发展的社交网络,世界宽的网络,道路网络,调度系统等方面有效地在Aparallow/Assistate设置中有效地修改输出。评估器将通过更好的数据结构和缩放量来扩大当前的并行环境/架构,以允许简化且快速实现thecurrent基本算法,这些算法可用于实践开源代码代码。 该项目中的发现将纳入现有的和新的课程和书籍和书籍,这些课程和书籍以及大数据的基础分布式算法和基础。 在这些领域中,有吸引力的开放问题的范围将为启发研究主题和直观的可访问问题,以使学生进入计算机科学和音乐学的研究。特别是该项目将涉及博士学位。学生和职员教育委员会,本科生,甚至是高中生(尤其是少数族裔和女性中的学生),其中许多人将在其他学术机构和研究中心进行研究,进一步扩大了这项研究的影响。这奖反映了NSF的法规任务,并被认为是通过基金会的知识优点和广泛的评估来进行评估,这是值得通过评估来进行评估的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scheduling with Speed Predictions
通过速度预测进行调度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Stein其他文献

Internal Closedness and von Neumann-Morgenstern Stability in Matching Theory: Structures and Complexity
匹配理论中的内部封闭性和冯·诺依曼-摩根斯坦稳定性:结构和复杂性
  • DOI:
    10.48550/arxiv.2211.17050
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuri Faenza;Clifford Stein;Jia Wan
  • 通讯作者:
    Jia Wan
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
Energy-Efficient Scheduling with Predictions
带预测的节能调度
Cluster Before You Hallucinate: Node-Capacitated Network Design and Energy Efficient Routing
在你产生幻觉之前集群:节点容量网络设计和节能路由
  • DOI:
    10.1137/20m1360645
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravishankar Krishnaswamy;Viswanath Nagarajan;K. Pruhs;Clifford Stein
  • 通讯作者:
    Clifford Stein

Clifford Stein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Stein', 18)}}的其他基金

Symposium on Discrete Algorithms Science (SODA) 2019 Travel Grant
离散算法科学研讨会(SODA)2019年旅费资助
  • 批准号:
    1906903
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Symposium on Discrete Algorithms Science (SODA) 2018 Travel Grant
离散算法科学研讨会 (SODA) 2018 年旅费资助
  • 批准号:
    1807311
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Moving Towards Secure and Massive Parallel Computing
SPX:协作研究:迈向安全和大规模并行计算
  • 批准号:
    1822809
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF:Small:Beyond Worst Case Running time: Algorithms for Routing, Scheduling and Matching
AF:小:超越最坏情况运行时间:路由、调度和匹配算法
  • 批准号:
    1714818
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2016 Travel Grant
SODA 2016 旅行补助金
  • 批准号:
    1564184
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2017 Travel Grant
SODA 2017 旅行补助金
  • 批准号:
    1701346
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2015 Travel Grant
SODA 2015 旅行补助金
  • 批准号:
    1455620
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF:Small:Scheduling and Routing: Algorithms with novel cost measures
AF:Small:调度和路由:具有新颖成本度量的算法
  • 批准号:
    1421161
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: EAGER: Scheduling with Resource Contraints
AF:EAGER:具有资源约束的调度
  • 批准号:
    1349602
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SODA 2014 Travel Grant
SODA 2014 旅行补助金
  • 批准号:
    1348439
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
    82270494
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了