First-principles Theory of Thermal Effects in Spin Transport
自旋输运热效应第一性原理理论
基本信息
- 批准号:1005642
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports computational and theoretical research and education aimed at understanding thermal effects in spin-dependent transport. It is well known that spin disorder affects the electronic structure and generates scattering of electrons in magnetic materials, but the specific mechanisms of its influence on the transport properties are poorly understood. The influence of thermal phonons on spin-dependent transport and its interplay with spin fluctuations have also received little attention.The PI will investigate the effects of thermal spin fluctuations and phonons on the electronic structure and transport properties of magnetic materials and heterostructures using first-principles electronic structure theory. This research will pursue several directions: (1) The effect of thermal spin fluctuations on the electronic structure of half-metallic ferromagnets and their interfaces with semiconductors, as well as on the spin injection across these interfaces, will be investigated. The effect of spin-orbit coupling on spin injection from half-metals will also be studied. (2) The mechanisms of temperature dependence of tunneling magnetoresistance in MgO-based magnetic tunnel junctions will be studied, including the effects of thermal spin fluctuations and phonons. (3) The mechanisms of exchange interaction in electron-doped ferromagnetic semiconductor EuO will be studied, along with its spin transport properties at finite temperatures. (4) Spin-disorder resistivity of ferromagnetic metals will be investigated focusing on the quantitative trends in the sequence of heavy rare-earth metals from Gd to Tm, and on the deviations from Matthiessen's rule resulting from the interplay between the spin-disorder and phonon scatterings.The project will have broader impacts by facilitating the design of new and more efficient magnetoelectronic devices, and through the development of new computational tools for the studies of finite-temperature magnetic properties. Research will involve graduate students, who will be educated in modern electronic structure, magnetism and transport theory and gain experience in the use and development of sophisticated electronic-structure codes.NON-TECHNICAL SUMMARYThis award supports computational and theoretical research and education aimed at understanding the physical mechanisms that affect the flow of electric current in bulk magnetic materials and tiny magnetic structures of atoms some million times smaller than the size of a human hair. These are materials, in which the electron spin plays an important role. An electron can be thought of as a tiny magnet. Its magnetic properties are related to an intrinsically quantum mechanical property known as spin. The focus of this research is on calculating the temperature dependent current flow through these magnetic materials. A better understanding of how current flows through magnetic materials contributes to electronic device technology for information systems and emerging future electronic device technologies that exploit not only the electron charge as existing devices do now, but also the electron spin. This research will expand our ability to predict the properties of materials starting only from the identities of the constituent atoms. This contributes to the broader vision of being able to design materials with desired properties through computer simulations based on fundamental principles of quantum mechanics.The research involves developing new computational tools for the studies of temperature dependent magnetic properties, which may be shared with the broader computational materials research community. This project will provide educational experiences for graduate students in advanced materials theory and modeling techniques using sophisticated computational tools.
技术摘要该奖项支持旨在了解自旋相关输运中的热效应的计算和理论研究和教育。众所周知,自旋无序会影响磁性材料中的电子结构并产生电子散射,但其影响输运性质的具体机制却知之甚少。热声子对自旋相关输运的影响及其与自旋涨落的相互作用也很少受到关注。PI将利用第一原理研究热自旋涨落和声子对磁性材料和异质结构的电子结构和输运特性的影响电子结构理论。本研究将致力于以下几个方向:(1)研究热自旋涨落对半金属铁磁体及其与半导体界面的电子结构以及跨这些界面的自旋注入的影响。还将研究自旋轨道耦合对半金属自旋注入的影响。 (2) 研究MgO基磁隧道结中隧道磁阻的温度依赖性机制,包括热自旋涨落和声子的影响。 (3) 研究电子掺杂铁磁半导体EuO中的交换相互作用机制及其在有限温度下的自旋输运特性。 (4) 研究铁磁金属的自旋无序电阻率,重点关注重稀土金属从Gd到Tm序列的定量趋势,以及自旋无序与声子相互作用导致的与马蒂森规则的偏差该项目将通过促进新型且更高效的磁电子器件的设计以及开发用于研究有限温度磁特性的新计算工具来产生更广泛的影响。研究将涉及研究生,他们将接受现代电子结构、磁学和输运理论的教育,并获得复杂电子结构代码的使用和开发经验。非技术摘要该奖项支持旨在理解影响大块磁性材料中电流流动的物理机制以及比人类头发尺寸小数百万倍的原子的微小磁性结构。这些材料中电子自旋起着重要作用。电子可以被认为是一个微小的磁铁。它的磁性与称为自旋的本质量子力学特性有关。这项研究的重点是计算流经这些磁性材料的与温度相关的电流。更好地理解电流如何流过磁性材料有助于信息系统的电子设备技术和新兴的未来电子设备技术,这些技术不仅像现有设备一样利用电子电荷,而且还利用电子自旋。这项研究将扩展我们仅从组成原子的特性开始预测材料特性的能力。这有助于实现更广阔的愿景,即能够通过基于量子力学基本原理的计算机模拟来设计具有所需特性的材料。该研究涉及开发新的计算工具来研究温度相关的磁特性,这些工具可能与更广泛的计算共享材料研究团体。该项目将为研究生提供先进材料理论和使用复杂计算工具的建模技术的教育经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirill Belashchenko其他文献
Kirill Belashchenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirill Belashchenko', 18)}}的其他基金
First-Principles Studies of Spin-Orbit Torque and Magnetoresistance in Magnetic Nanostructures
磁性纳米结构中自旋轨道扭矩和磁阻的第一性原理研究
- 批准号:
1916275 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
First-principles studies of relativistic spin interactions and torques
相对论自旋相互作用和扭矩的第一性原理研究
- 批准号:
1609776 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
First-Principles Studies of Magnetic Interactions and Excitations
磁相互作用和激励的第一性原理研究
- 批准号:
1308751 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
面向不可移动文化遗产干预的可识别性原则的历史、理论与本土化应用技术体系研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于循证原则的中国民航运输航空飞行员核心胜任能力理论体系与评估技术研究
- 批准号:U2133209
- 批准年份:2021
- 资助金额:200 万元
- 项目类别:重点项目
竞争中性原则与中国对外贸易利益: 理论机制、实证检验与量化分析
- 批准号:
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:
电子商务产品试用营销活动与产品评分偏差:基于社会交换理论及互惠原则的视角
- 批准号:71872080
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
因析设计的一般最小低阶混杂构造理论及应用
- 批准号:11661076
- 批准年份:2016
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
RII Track-4:NSF: Exploring the Emergent Features of Exotic Nuclear Systems with First-principles Theory of Nuclear Reactions
RII Track-4:NSF:利用核反应第一原理理论探索奇异核系统的新兴特征
- 批准号:
2327385 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CAREER: Development and Application of First-Principles Dielectric Embedding Many-Body Perturbation Theory for Heterogeneous Interfaces
职业:异质界面第一性原理电介质嵌入多体摄动理论的发展与应用
- 批准号:
2044552 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research:Element: Development of MuST, A Multiple Scattering Theory based Computational Software for First Principles Approach to Disordered Materials
合作研究:元素:MuST 的开发,一种基于多重散射理论的计算软件,用于无序材料的第一原理方法
- 批准号:
1931367 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Element: Development of MuST, A Multiple Scattering Theory based Computational Software for First Principles Approach to Disordered Materials
合作研究:元素:MuST 的开发,一种基于多重散射理论的计算软件,用于无序材料的第一原理方法
- 批准号:
1931525 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Development of MuST, A Multiple Scattering Theory based Computational Software for First Principles Approach to Disordered Materials
合作研究:元素:MuST 的开发,一种基于多重散射理论的计算软件,用于无序材料的第一原理方法
- 批准号:
1931445 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant