First-principles studies of relativistic spin interactions and torques
相对论自旋相互作用和扭矩的第一性原理研究
基本信息
- 批准号:1609776
- 负责人:
- 金额:$ 25.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports computational and theoretical research and education aimed at better understanding the mechanisms by which relativistic magnetic effects manifest themselves in the properties of magnetic materials and nanostructures. The ability to understand these mechanisms is critical for further progress and continued innovation in information technology. The focus of this project is on the fundamental physics relevant for emerging electronic device technologies that exploit electron spin in addition to, or instead of its electric charge. Part of this research will involve investigations of the properties of specific magnetic materials that are promising for use in such devices. The project will also study the effects arising at interfaces between different materials, which enable the operation of current and future devices. Overall, it will advance the broader goal of designing materials and nanoscale devices with desired properties through computer simulations based on fundamental principles of quantum mechanics.The project will achieve broader impacts by advancing the fundamental theory of magnetism, facilitating the design of novel magnetoelectronic devices, and through the development of new computational tools, which will be made available to the broader computational materials research community. The research will involve graduate students, who will be educated in modern electronic structure, magnetism and transport theory, and will gain experience in the use and development of state-of-the-art electronic-structure and transport codes.TECHNICAL SUMMARYThis award supports computational and theoretical research and education aimed at better understanding relativistic magnetic interactions in magnetic materials and nanostructures, and their effects on transport properties. This research is based on density-functional electronic structure theory, and includes the development of computational tools for the description of relativistic magnetic interactions and spin torques based on linear-response and nonequilibrium Green's function techniques. The project will focus on elucidating the mechanisms of magnetocrystalline anisotropy in metallic antiferromagnets, electronic structure of magnetic materials of current interest, such as magnetically doped topological insulators and half-metallic ferromagnets, and spin-orbit torques in non-centrosymmetric metals and ferromagnet/heavy-metal bilayers. The central feature of this research is realistic, material-specific treatment of disorder and temperature-dependent spin fluctuations.The project will achieve broader impacts by advancing the fundamental theory of magnetism, facilitating the design of novel magnetoelectronic devices, and through the development of new computational tools, which will be made available to the broader computational materials research community. The research will involve graduate students, who will be educated in modern electronic structure, magnetism and transport theory, and will gain experience in the use and development of state-of-the-art electronic-structure and transport codes.
非技术摘要这一奖项支持计算和理论研究和教育,旨在更好地理解相对论磁效应在磁性材料和纳米结构的性质中表现出来的机制。了解这些机制的能力对于信息技术的进一步进步和持续创新至关重要。该项目的重点放在与新兴的电子设备技术相关的基本物理学上,这些技术除了或者不是电荷之外,还可以利用电子旋转。这项研究的一部分将涉及对有望在此类设备中使用的特定磁性材料的性质进行研究。该项目还将研究在不同材料之间的接口上产生的效果,从而使当前和将来的设备的运行能够运行。总体而言,它将通过基于量子力学的基本原理来设计材料和纳米级设备,并通过计算机模拟设计材料和纳米级设备。该项目将通过推进磁性的基本理论,促进新型磁磁设备的设计设计,并通过将新计算工具的开发来实现广泛的材料,从而实现新型磁磁设备的设计,从而实现更广泛的影响。这项研究将涉及研究生,他们将接受现代电子结构,磁性和运输理论的教育,并将在最先进的电子结构和运输代码的使用和开发方面获得经验。技术摘要奖支持计算和理论研究和教育,旨在更好地理解磁性材料和纳米构造及其运输属性及其及其对运输及其影响及其效果的相对性磁相互作用。这项研究基于密度功能的电子结构理论,包括开发计算工具,用于描述相对论磁相互作用和基于线性反应和非平衡绿色功能技术的自旋扭矩。该项目将着重于阐明金属抗铁磁体中磁化环脊髓酯各向异性的机制,当前感兴趣的磁性材料的电子结构,例如磁性掺杂的拓扑绝缘子和半金属的铁磁体,以及在非中心含量的金属群和Ferrers/Ferrers/Ferrers/FerermeT/Ferreme-topears/firermeT/firermeT/firermet/firermet/firer-higer/filermennet bilay bilay bial-bial-bial-bial bilay bilay bilay bilay bilay bilay bilay bilay。这项研究的核心特征是对疾病和温度依赖性自旋波动的现实,特定于材料的处理。该项目将通过推进磁性的基本理论,促进新型磁磁性设备的设计,并通过开发新的计算工具的开发来实现更广泛的影响,从而可以为更广泛的计算材料研究社区提供可用的新计算工具。这项研究将涉及研究生,他们将接受现代电子结构,磁性和运输理论的教育,并将在最先进的电子结构和运输代码的使用和开发方面获得经验。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proximity-induced magnetization in graphene: Towards efficient spin gating
- DOI:10.1103/physrevmaterials.4.114006
- 发表时间:2020-11
- 期刊:
- 影响因子:3.4
- 作者:M. Bosnar;Ivor Lončarić;P. Lazic;K. Belashchenko;I. Žutić
- 通讯作者:M. Bosnar;Ivor Lončarić;P. Lazic;K. Belashchenko;I. Žutić
Questaal: A package of electronic structure methods based on the linear muffin-tin orbital technique
- DOI:10.1016/j.cpc.2019.107065
- 发表时间:2020-04-01
- 期刊:
- 影响因子:6.3
- 作者:Pashov, Dimitar;Acharya, Swagata;van Schilfgaarde, Mark
- 通讯作者:van Schilfgaarde, Mark
Detection of uncompensated magnetization at the interface of an epitaxial antiferromagnetic insulator
外延反铁磁绝缘体界面处未补偿磁化强度的检测
- DOI:10.1103/physrevb.102.174406
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Lapa, Pavel N.;Lee, Min-Han;Roshchin, Igor V.;Belashchenko, Kirill D.;Schuller, Ivan K.
- 通讯作者:Schuller, Ivan K.
Voltage-controlled magnetic anisotropy in antiferromagnetic MgO-capped MnPt films
- DOI:10.1103/physrevmaterials.5.054406
- 发表时间:2020-08
- 期刊:
- 影响因子:3.4
- 作者:Po-Hao Chang;W. Fang;T. Ozaki;K. Belashchenko
- 通讯作者:Po-Hao Chang;W. Fang;T. Ozaki;K. Belashchenko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirill Belashchenko其他文献
Kirill Belashchenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirill Belashchenko', 18)}}的其他基金
First-Principles Studies of Spin-Orbit Torque and Magnetoresistance in Magnetic Nanostructures
磁性纳米结构中自旋轨道扭矩和磁阻的第一性原理研究
- 批准号:
1916275 - 财政年份:2020
- 资助金额:
$ 25.86万 - 项目类别:
Continuing Grant
First-Principles Studies of Magnetic Interactions and Excitations
磁相互作用和激励的第一性原理研究
- 批准号:
1308751 - 财政年份:2013
- 资助金额:
$ 25.86万 - 项目类别:
Continuing Grant
First-principles Theory of Thermal Effects in Spin Transport
自旋输运热效应第一性原理理论
- 批准号:
1005642 - 财政年份:2010
- 资助金额:
$ 25.86万 - 项目类别:
Continuing Grant
相似国自然基金
基于“碳循”原则的模块化建筑隐含碳排放系统测算和协同优化研究
- 批准号:72301232
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
完全统计学习原则下的零经验风险记忆学习研究
- 批准号:62366035
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于“谁受益谁付费”原则的电网替代性储能成本疏导机制研究
- 批准号:72304056
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于绿色化学原则的不饱和烃氧化反应研究
- 批准号:22231002
- 批准年份:2022
- 资助金额:280 万元
- 项目类别:重点项目
基于肌肉能量消耗最小化原则和肌肉协同的外骨骼助力效果优化研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
First-Principles Studies of Spin-Orbit Torque and Magnetoresistance in Magnetic Nanostructures
磁性纳米结构中自旋轨道扭矩和磁阻的第一性原理研究
- 批准号:
1916275 - 财政年份:2020
- 资助金额:
$ 25.86万 - 项目类别:
Continuing Grant
Theoretical studies on the mechanism of the electrode interfacial phenomena by the integral equation with first-principles calculation
第一性原理计算积分方程理论研究电极界面现象机理
- 批准号:
18K05307 - 财政年份:2018
- 资助金额:
$ 25.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
First-principles studies of Jahn-Teller effects in vanadium, niobium, and tantalum tetrafluoride molecules: electronic structure, vibronic spectra and radiationless decay dynamics
钒、铌和四氟化钽分子中 Jahn-Teller 效应的第一性原理研究:电子结构、电子振动谱和无辐射衰变动力学
- 批准号:
328174852 - 财政年份:2017
- 资助金额:
$ 25.86万 - 项目类别:
Research Grants
First Principles Studies of Novel Approach for Achieving Ultrahigh Thermal Conductivity in Materials
实现材料超高导热率新方法的第一性原理研究
- 批准号:
1402949 - 财政年份:2014
- 资助金额:
$ 25.86万 - 项目类别:
Standard Grant
First-principles studies of electronic and transport properties of one-dimensional edge states of nano-structured topological insulators
纳米结构拓扑绝缘体一维边缘态电子和输运特性的第一性原理研究
- 批准号:
237672149 - 财政年份:2013
- 资助金额:
$ 25.86万 - 项目类别:
Priority Programmes