p-adic local Langlands and Iwasawa theory

p-进局部 Langlands 和 Iwasawa 理论

基本信息

  • 批准号:
    1001768
  • 负责人:
  • 金额:
    $ 20.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

Over the last decade, the Iwasawa theory of non-ordinary modular forms of weight 2 has seen a surge of results which has brought the theory more on par with the well-established ordinary case. However, in weights greater than 2, little is known in the non-ordinary case about even the most fundamental questions on Selmer groups and L-values.The most serious obstacles to progress along these lines are (1) the wild behavior of non-ordinary p-adic L-functions, and (2) the complicated nature of the local conditions at p which arise. To circumvent the first of these obstacles, Pollack seeks to make a systematic study of the Iwasawa theory of non-ordinary modular forms at each finite level of the cyclotomic Zp-extension. To deal with the local obstacle, he aims to use the p-adic local Langlands correspondence to control the local structures which arise, and to then formulate an algebraic theory of theta-elements which is the analogue of the analytically defined Mazur-Tate elements. Pollack aims to prove a series of theorems which show that these algebraically defined elements control the size and structure of Selmer groups, and to show that the main conjecture is equivalent to the equality of these elements with Mazur-Tate elements. One particular goal of this program is to combine results of Kato and the theory of algebraic theta-elements to prove a conjecture of Mazur and Tate which asserts that their analytic theta-element lies in the Fitting ideal of a certain dual Selmer group.The motivation for the study of this project comes from the theory of elliptic curves which are certain mathematical objects whose points have the shape of a doughnut. Elliptic curves, once the focus of study of only pure mathematicians, have now become ubiquitous in both the theory and practice of cryptography. Further, as a result of the breakthrough proof of Fermat's Last Theorem by Andrew Wiles in the mid 90s, we now know that elliptic curves are intimately connected to modular forms which are functions of a complex variable with many many symmetries. Wiles' theorem essentially states that one can make a precise dictionary between elliptic curves over the rational numbers (which are geometric objects) and certain modular forms of weight 2 (which are calculus-type objects). This project pushes out beyond the case of weight 2 modular forms, and seeks to make a systematic study of certain properties of arbitrary weight modular forms. It remains to be seen if these higher weight modular forms (which can be thought of as generalized elliptic curves) are also highly important from a cryptographic viewpoint.
在过去的十年中,非常见的重量模块化形式的iwasawa理论看到了一系列的结果,这使该理论更与公认的普通案例相提并论。 然而,在非平凡的情况下,关于Selmer组和L值最基本的问题,在重量大于2的重量中,几乎没有人知道。沿着这些线路进行进展的最严重的障碍是(1)非常见的P-ADIC L-functions的狂野行为,以及(2)p的本地条件的复杂性质。 为了避免这些障碍中的第一个,Pollack试图在环环ZP扩展的每个有限水平上对硫磺的非常见模块化形式理论进行系统的研究。 为了应对当地的障碍,他的目标是使用P-AdiC的局部兰兰人来控制出现的局部结构,然后制定一个代数的theta元素理论,这是分析定义的Mazur-Tate元素的类似物。 Pollack旨在证明一系列定理表明这些代数定义的元素控制Selmer组的大小和结构,并表明主要猜想等于与Mazur-Tate元素的这些元素的平等性。 该计划的一个特殊目标是结合KATO的结果和代数theta元素的理论,证明了Mazur和Tate的猜想,这断言它们的分析性基于元素在于某个二元selmer群体的拟合理想。该项目的动机来自该项目的动机,这是椭圆形的数学对象的一个​​贡献,它是一个贡献的一定的贡献。 椭圆形曲线曾经是对纯数学家的研究的重点,现在在密码学的理论和实践中都变得无处不在。 此外,由于安德鲁·威尔斯(Andrew Wiles)在90年代中期的《安德鲁·威尔斯》(Andrew Wiles)的最后一个定理的突破性证明,我们现在知道椭圆曲线与模块化形式密切相关,这是模块化形式,这是与许多对称性的复杂变量的函数。 威尔斯定理基本上指出,一个人可以在椭圆形曲线(几何对象)和某些重量2的模块化形式(这是colculus-type对象)之间制作精确的词典。 该项目推出了重量2模块化形式的情况,并试图对任意权重模块化形式的某些特性进行系统的研究。 从加密角度来看,这些更高的重量模块化形式是否也非常重要,还有待观察。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Pollack其他文献

Several elements related to zeta values
与zeta值相关的几个要素
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masato Kurihara;Robert Pollack;Masato Kurihara;Masato Kurihara;Masato Kurihara;栗原将人;Masato Kurihara
  • 通讯作者:
    Masato Kurihara
On the Stickelberger ideals for cyclotomic fields
关于分圆域的斯蒂克伯格理想
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masato Kurihara;Robert Pollack;Masato Kurihara
  • 通讯作者:
    Masato Kurihara
岩澤理論における行列式表示
岩泽理论中的行列式表示
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masato Kurihara;Robert Pollack;Masato Kurihara;Masato Kurihara;Masato Kurihara;栗原将人
  • 通讯作者:
    栗原将人
Stickelberger elements and the structure of arithmetic objects
Stickelberger 元素和算术对象的结构
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masato Kurihara;Robert Pollack;Masato Kurihara;Masato Kurihara;Masato Kurihara
  • 通讯作者:
    Masato Kurihara
p-adic L-Functions and Rational Points of Elliptic Curves with Supersingular Reduction
具有超奇异约简的椭圆曲线的p进L函数和有理点
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masato Kurihara;Robert Pollack;Masato Kurihara;Masato Kurihara;Masato Kurihara;栗原将人;Masato Kurihara;栗原将人;Masato Kurihara;栗原将人;Masato Kurihara
  • 通讯作者:
    Masato Kurihara

Robert Pollack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Pollack', 18)}}的其他基金

Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302285
  • 财政年份:
    2023
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
Extended Eigenvarieties and Their Iwasawa Theory
扩展特征簇及其 Iwasawa 理论
  • 批准号:
    1702178
  • 财政年份:
    2017
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
p-adic variation in Iwasawa theory
岩泽理论中的 p 进变分
  • 批准号:
    1303302
  • 财政年份:
    2013
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
Overconvergent cohomology of higher rank groups
高阶群的过收敛上同调
  • 批准号:
    0701153
  • 财政年份:
    2007
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
Open Questions and Recent Developments in Iwasawa Theory
岩泽理论的悬而未决的问题和最新进展
  • 批准号:
    0509836
  • 财政年份:
    2005
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
Collaborative Research: P-adic Variation of Supersingular Iwasawa Invariants
合作研究:超奇异Iwasawa不变量的P进变分
  • 批准号:
    0439264
  • 财政年份:
    2004
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
p-adic L-series of Modular Forms at Supersingular Primes
超奇异素数模形式的 p 进 L 级数
  • 批准号:
    0102036
  • 财政年份:
    2001
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Fellowship Award
Cloned Human and Mouse Genes Directing Adipogenesis
克隆的人类和小鼠基因指导脂肪生成
  • 批准号:
    9107166
  • 财政年份:
    1991
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
Concurrent Regulations of Cell Division and Cell Shape
细胞分裂和细胞形状的同时调控
  • 批准号:
    7509912
  • 财政年份:
    1975
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Continuing Grant

相似国自然基金

兴趣电商企业的地方嵌入及其对当地土特产产业带动能力的影响研究
  • 批准号:
    72373158
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
自然保护地伞护物种与当地社区的空间作用机理及测度方法研究-以人鹤系统为例
  • 批准号:
    52208066
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
黄河流域自然保护区管理效度对当地社会-生态耦合协调的影响与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄河流域自然保护区管理效度对当地社会-生态耦合协调的影响与机制研究
  • 批准号:
    72204252
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
自然保护地伞护物种与当地社区的空间作用机理及测度方法研究-以人鹤系统为例
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Characters of p-adic reductive groups in the local Langlands correspondence
局部朗兰兹对应中 p 进还原群的特征
  • 批准号:
    2747326
  • 财政年份:
    2022
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Studentship
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2022
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2021
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    DGECR-2020-00346
  • 财政年份:
    2020
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Discovery Launch Supplement
Representations of p-adic Groups and the Local Langlands Correspondence
p-adic 群的表示和当地朗兰通讯
  • 批准号:
    2055230
  • 财政年份:
    2020
  • 资助金额:
    $ 20.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了