Geometric Methods in the Local Langlands Correspondance for p-adic Groups.

p-adic 群的局部 Langlands 对应中的几何方法。

基本信息

  • 批准号:
    DGECR-2020-00346
  • 负责人:
  • 金额:
    $ 0.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Launch Supplement
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有总结 - Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fiori, Andrew其他文献

Fiori, Andrew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fiori, Andrew', 18)}}的其他基金

Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2022
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2021
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2020
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Structure or orthogonal shimura varieties
结构或正交志村品种
  • 批准号:
    392235-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Structure or orthogonal shimura varieties
结构或正交志村品种
  • 批准号:
    392235-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
  • 批准号:
    347451-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Postgraduate Scholarships - Master's
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
  • 批准号:
    347451-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

协同极化信息的时序InSAR地质灾害监测优化方法研究
  • 批准号:
    42307255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
冻融环境下GFRP锚杆锚固界面粘结劣化机理及其设计方法研究
  • 批准号:
    52308165
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于瞬态成像响应的非同步相移轮廓术三维测量方法研究
  • 批准号:
    62375078
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
构件复杂背景下的实景三维古建筑物细节多层次语义提取方法研究
  • 批准号:
    62306107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多源微振动抑制的智能柔顺多稳态耗能机理与方法研究
  • 批准号:
    52305103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2022
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2021
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
  • 批准号:
    RGPIN-2020-05316
  • 财政年份:
    2020
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric methods in the p-adic local Langlands program
p-adic 局部朗兰兹规划中的几何方法
  • 批准号:
    244486025
  • 财政年份:
    2013
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Heisenberg Fellowships
Geometric methods in local and global representation theory
局部和全局表示论中的几何方法
  • 批准号:
    1261660
  • 财政年份:
    2012
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了