Collaborative Research/DDDAS-TMRP: An Adaptive Cyberinfrastructure for Threat Management in Urban Water Distribution Systems
协作研究/DDDAS-TMRP:城市供水系统威胁管理的自适应网络基础设施
基本信息
- 批准号:0963571
- 负责人:
- 金额:$ 18.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-22 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this collaborative/multi-disciplinary research project is to develop a cyberinfrastructure system that will both adapt to and control changing needs in data, models, computer resources and management choices facilitated by a dynamic workflow design. Using virtual simulation and a field study, this cyberinfrastructure will be tested on illustrative scenarios for adaptive management of contamination events in water distribution systems. Contamination threat management in drinking water distribution systems involves real-time characterization of the contaminant source and plume, identification of control strategies, and design of incremental data sampling schedules. This requires dynamic integration of time-varying measurements of flow, pressure and contaminant concentration with analytical modules including models to simulate the state of the system, statistical methods for adaptive sampling, and optimization methods to search for efficient control strategies. For realistic distribution systems, the analytical modules are highly compute-intensive, requiring multi-level parallel processing via computer clusters. While data often drive the analytical modules, data needs for improving the accuracy and certainty of the solutions generated by these modules dynamically change when a contamination event unfolds. Since such time-sensitive threat events require real-time responses, the computational needs must also be adaptively matched with available resources. Thus, a software system is needed to facilitate this integration via a high-performance computing architecture (e.g., the TeraGrid) such that the measurement system, the analytical modules and the computing resources can mutually adapt and steer each other.Urban water distribution systems are vulnerable to accidental and intentional contamination incidents that could result in adverse human health and safety impacts. The pipe network in a typical municipal distribution system includes redundant flow paths to ensure service when parts of the network are unavailable, and is designed with significant storage to deliver water during daily peak demand periods. Thus, a typical network is highly interconnected and experiences significant and frequent fluctuations in flows and transport paths. These design features unintentionally enable contamination at a single point in the system to spread rapidly via different pathways through the network, unbeknown to consumers and operators. When a contamination event is detected via the first line of defense, e.g., data from a water quality surveillance sensor network and reports from consumers, the municipal authorities are faced with several critical questions as the contamination event unfolds: Where is the source of contamination? When and for how long did this contamination occur? Where additional hydraulic or water quality measurements should be taken to pinpoint the source more accurately? What is the current and near future extent of contamination? What response action, such as shutting down portions of the network, implementing hydraulic control strategies, or introducing decontaminants, should be taken to minimize the impact of the contamination event? What would be the impact on consumers by these actions? Real-time answers to such complex questions will present significant computational challenges. This project will address these challenges by developing an adaptive cyberinfrastucture that will enable real-time processing and control through dynamic integration of computational components and real-time sensor data. This system will be evaluated using contamination scenarios based on field-scale data from a large metropolitan area.
这个协作/多学科研究项目的目标是开发一个网络基础设施系统,该系统将适应和控制动态工作流程设计所促进的数据、模型、计算机资源和管理选择方面不断变化的需求。通过虚拟模拟和现场研究,该网络基础设施将在说明性场景中进行测试,以对配水系统中的污染事件进行自适应管理。 饮用水分配系统中的污染威胁管理涉及污染物源和羽流的实时特征、控制策略的识别以及增量数据采样计划的设计。这需要将流量、压力和污染物浓度的时变测量与分析模块动态集成,包括模拟系统状态的模型、自适应采样的统计方法以及寻找有效控制策略的优化方法。对于现实的分布式系统,分析模块是高度计算密集型的,需要通过计算机集群进行多级并行处理。虽然数据通常驱动分析模块,但当污染事件发生时,提高这些模块生成的解决方案的准确性和确定性的数据需求会动态变化。由于此类时间敏感的威胁事件需要实时响应,因此计算需求也必须与可用资源自适应匹配。因此,需要一个软件系统通过高性能计算架构(例如TeraGrid)来促进这种集成,以便测量系统、分析模块和计算资源可以相互适应和引导。城市供水系统是容易受到意外和故意污染事件的影响,从而对人类健康和安全造成不利影响。 典型市政供水系统中的管网包括冗余流路,以确保在部分管网不可用时提供服务,并设计有大量存储空间,以便在每日高峰需求期间供水。 因此,典型的网络是高度互连的,并且在流量和传输路径上经历显着且频繁的波动。 这些设计特征无意中使系统中单个点的污染通过网络的不同路径快速传播,而消费者和运营商却毫不知情。当通过第一道防线检测到污染事件时,例如来自水质监测传感器网络的数据和消费者的报告,随着污染事件的展开,市政当局面临着几个关键问题:污染源在哪里?这种污染何时发生、持续了多长时间?应在何处进行额外的水力或水质测量以更准确地查明水源?当前和近期的污染程度如何?应采取哪些响应措施(例如关闭部分管网、实施水力控制策略或引入净化剂)来最大程度地减少污染事件的影响?这些行动会对消费者产生什么影响?对此类复杂问题的实时回答将带来巨大的计算挑战。 该项目将通过开发自适应网络基础设施来应对这些挑战,该基础设施将通过计算组件和实时传感器数据的动态集成来实现实时处理和控制。该系统将使用基于大都市地区现场规模数据的污染场景进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregor von Laszewski其他文献
Gregor von Laszewski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregor von Laszewski', 18)}}的其他基金
CSR:Medium:Collaborative Research: An Analytical Approach to Quantifying Availability (AQUA) for Cloud Resource Provisioning and Allocation
CSR:中:协作研究:量化云资源配置和分配的可用性 (AQUA) 的分析方法
- 批准号:
1409256 - 财政年份:2014
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: DDDAS-TMRP: An Adaptive Cyberinfrastructure for Threat Management in Urban Water Distribution Systems
合作研究:DDDAS-TMRP:城市供水系统威胁管理的自适应网络基础设施
- 批准号:
0540076 - 财政年份:2006
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
SGER: NMI: Grid Usage Sensors and Services
SGER:NMI:电网使用传感器和服务
- 批准号:
0414407 - 财政年份:2004
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
NMI: Collaborative Research: Grid Portal Middleware
NMI:协作研究:网格门户中间件
- 批准号:
0330545 - 财政年份:2003
- 资助金额:
$ 18.23万 - 项目类别:
Cooperative Agreement
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
$ 18.23万 - 项目类别:
Continuing Grant
Collaborative Research: DDDAS-TMRP: MIPS: A Real-Time Measurement Inversion Prediction Steering Framework for Hazardous Events
合作研究:DDDAS-TMRP:MIPS:危险事件实时测量反演预测指导框架
- 批准号:
0929947 - 财政年份:2009
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
$ 18.23万 - 项目类别:
Continuing Grant
DDDAS-TMRP (Collaborative Research): An Adaptive Cyberinfrastructure for Threat Management in Urban Water Distribution Systems
DDDAS-TMRP(合作研究):城市供水系统威胁管理的自适应网络基础设施
- 批准号:
0849064 - 财政年份:2008
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
- 批准号:
0911750 - 财政年份:2008
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant