CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications

职业:计算几何力学:基础、计算和应用

基本信息

  • 批准号:
    1010687
  • 负责人:
  • 金额:
    $ 42.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-29 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Date: November 21, 2007Proposal: DMS- 0747659PI: Leok, Melvin Institution: Purdue UniversityTitle: CAREER: Computational Geometric Mechanics: Foundations, Computation, and ApplicationsABSTRACTSymmetry, and the study of invariant and equivariant objects, is a deep and unifying principle underlying a variety of mathematical fields. In particular, geometric mechanics is characterized by the application of symmetry and differential geometric techniques to Lagrangian and Hamiltonian mechanics, and geometric integration is concerned with the construction of numerical methods with geometric invariant and equivariant properties. Computational geometric mechanics blends these fields, and uses a self-consistent discretization of geometry and mechanics to systematically construct geometric structure-preserving numerical schemes. The proposed research will combine theoretical and computational tools arising from Dirac mechanics and geometry, noncommutative harmonic analysis, and uncertainty quantification to dramatically extend the applicability of computational geometric mechanics and geometric control to engineering problems that evolve intrinsically on nonlinear spaces, such as Lie groups and homogeneous spaces. This will provide insights into the canonical discretization of Dirac constraints, nonholonomic constraints, and interconnected systems. In addition, the study of uncertainty in the context of geometric control will improve the robustness and reliability of the resulting numerical and computational tools.This research will improve our ability to control interconnected systems of autonomous vehicles in a robust and efficient fashion, by explicitly taking into account the uncertainty inherent in our knowledge of the surrounding environment. Our results will be applicable to the control of distributed sensor networks, consisting of an interconnected set of satellites, unmanned aerial vehicles and underwater vehicles. Such sensor networks are an exciting new development in the field of remote sensing that has the potential to dramatically increase the efficiency, coverage, and reliability of the information we obtain about our oceans, environment, and climate. More broadly, most complex engineering systems can be expressed as an interconnected system of more elementary components, and our mathematical framework will allow us to more readily understand complex systems in terms of the behavior of its component parts and the manner in which they are interconnected.
日期:2007 年 11 月 21 日提案:DMS- 0747659PI:Leok,Melvin 机构:普渡大学标题:职业:计算几何力学:基础、计算和应用摘要对称性以及对不变和等变对象的研究,是各种背后的深刻而统一的原理的数学领域。特别是,几何力学的特点是将对称和微分几何技术应用于拉格朗日和哈密顿力学,而几何积分则涉及具有几何不变和等变性质的数值方法的构造。计算几何力学融合了这些领域,并利用几何和力学的自洽离散化来系统地构建几何结构保持数值格式。拟议的研究将结合狄拉克力学和几何、非交换调和分析和不确定性量化产生的理论和计算工具,以极大地将计算几何力学和几何控制的适用性扩展到非线性空间上本质上演化的工程问题,例如李群和同质空间。这将为狄拉克约束、非完整约束和互连系统的规范离散化提供见解。此外,对几何控制背景下的不确定性的研究将提高所得数值和计算工具的鲁棒性和可靠性。这项研究将通过明确地采用考虑到我们对周围环境的了解所固有的不确定性。我们的结果将适用于分布式传感器网络的控制,该网络由一组互连的卫星、无人机和水下航行器组成。这种传感器网络是遥感领域令人兴奋的新发展,有可能显着提高我们获取有关海洋、环境和气候信息的效率、覆盖范围和可靠性。 更广泛地说,大多数复杂的工程系统可以表示为更基本组件的互连系统,并且我们的数学框架将使我们能够更容易地理解复杂系统的组成部分的行为以及它们互连的方式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melvin Leok其他文献

Safe Stabilizing Control for Polygonal Robots in Dynamic Elliptical Environments
动态椭圆环境中多边形机器人的安全稳定控制
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kehan Long;Khoa Tran;Melvin Leok;Nikolay Atanasov
  • 通讯作者:
    Nikolay Atanasov
On Properties of Adjoint Systems for Evolutionary PDEs
演化偏微分方程伴随系统的性质
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian K. Tran;Benjamin Southworth;Melvin Leok
  • 通讯作者:
    Melvin Leok

Melvin Leok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melvin Leok', 18)}}的其他基金

Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
  • 批准号:
    2307801
  • 财政年份:
    2023
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Geometric Numerical Integration of Plasma Physics and General Relativity
等离子体物理与广义相对论的几何数值积分
  • 批准号:
    1813635
  • 财政年份:
    2018
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Geometric Numerical Discretizations of Gauge Field Theories and Interconnected Systems
规范场论和互连系统的几何数值离散
  • 批准号:
    1411792
  • 财政年份:
    2014
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Ergodic Trajectories in Discrete Mechanics
协作研究:离散力学中的遍历轨迹
  • 批准号:
    1334759
  • 财政年份:
    2013
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group
合作研究:李群上哈密顿系统的计算几何不确定性传播
  • 批准号:
    1029445
  • 财政年份:
    2010
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
  • 批准号:
    1001521
  • 财政年份:
    2009
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    0747659
  • 财政年份:
    2008
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Continuing Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
  • 批准号:
    0714223
  • 财政年份:
    2007
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Computational Geometric Mechanics and its Applications to Geometric Control Theory
计算几何力学及其在几何控制理论中的应用
  • 批准号:
    0726263
  • 财政年份:
    2007
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
Computational Geometric Mechanics and its Applications to Geometric Control Theory
计算几何力学及其在几何控制理论中的应用
  • 批准号:
    0504747
  • 财政年份:
    2005
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant

相似国自然基金

顺层边坡变形调控新结构——让剪让压型锚拉桩的承载机理与计算方法
  • 批准号:
    52378327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向计算密集型应用的新型计算范式及其加速器关键技术
  • 批准号:
    62374108
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于多精度计算机试验的航空设备多函数型响应质量设计研究
  • 批准号:
    72371128
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
计算奇异值分解和广义奇异值分解的Jacobi-Davidson型迭代方法
  • 批准号:
    12301485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超宽禁带半导体固溶体合金中p型透明导电氧化物材料设计与计算分析
  • 批准号:
    12374074
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Characterization of the arenavirus glycoprotein complex and mechanism of fusion
沙粒病毒糖蛋白复合物的表征和融合机制
  • 批准号:
    9021590
  • 财政年份:
    2015
  • 资助金额:
    $ 42.51万
  • 项目类别:
CAREER: A Parallel Computational Framework of Multiscale Geometric Modeling and Mesh Generation for Cardiac Biomechanics Application
职业:心脏生物力学应用的多尺度几何建模和网格生成的并行计算框架
  • 批准号:
    1149591
  • 财政年份:
    2012
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
CAREER: Computational Geometry, Mesh Generation, Geometric Modeling
职业:计算几何、网格生成、几何建模
  • 批准号:
    0846872
  • 财政年份:
    2009
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    0747659
  • 财政年份:
    2008
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Algorithms for Computational Problems in Bioinformatics Via Combinatorial and Geometric Techniques
职业:通过组合和几何技术解决生物信息学计算问题的有效算法
  • 批准号:
    0346973
  • 财政年份:
    2004
  • 资助金额:
    $ 42.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了