Arithmetic Groups, Their Applications and Generalizations
算术群、它们的应用和概括
基本信息
- 批准号:0965758
- 负责人:
- 金额:$ 15.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project addresses a broad range of problems in the theory of arithmetic groups and related areas. Part of the proposal builds on recent work of the PI with Gopal Prasad in which the notion of weak commensurability of Zariski-dense subgroups of semi-simple algebraic groups was introduced, analyzed and then applied to problems in differential geometry dealing with length-commensurable and isospectral locally symmetric spaces. One of the goals in this area is to complete the investigation of weakly commensurable arithmetic subgroups of absolutely almost simple groups and to extend the results to some nonarithmetic groups. Further goals include investigating weak commensurability for subgroups of general semi-simple groups and for groups over fields of positive characteristic. The proposal addresses potential applications of these results to differential geometry. Another important component of the proposal is the congruence subgroup problem, which remains unresolved for anisotropic groups associated with noncommutative division algebras. The proposal discusses new criteria for the centrality of the congruence kernel that are expected to lead to the resolution of the congruence subgroup problem in new cases. In addition, the PI and G. Prasad plan to write a book on the congruence subgroup problem. Closely related to the congruence subgroup problem is the investigation of the normal subgroup structure of the groups of rational points of algebraic groups; one of the objectives here is to obtain an ultimate form of the congruence subgroup theorem for the multiplicative group of a finite-dimensional division algebra, which would complete a long line of research conducted by the PI jointly with Y. Segev and G.M. Seitz. The proposal also contains a number of problems that involve various generalizations of arithmetic groups, ranging from arbitrary Zariski-dense subgroups to the automorphism groups of free groups. Arithmetic groups are special groups whose elements are matrices with integral entries. This notion, which can be traced back to the work of Gauss on integral quadratic forms, plays a crucial role in many areas of mathematics including algebra and various parts of number theory (e.g., the theory of automorphic forms). In recent years, new applications of the theory of arithmetic groups have emerged in algebraic and differential geometry, Lie groups and combinatorics. The proposal focuses on several important aspects of the theory of arithmetic groups as well as on potential applications.
该项目解决了算术群理论和相关领域的广泛问题。该提案的一部分建立在 PI 与 Gopal Prasad 的最新工作基础上,其中引入、分析了半简单代数群的 Zariski 稠密子群的弱可通约性概念,然后将其应用于处理长度可通约和的微分几何问题。等谱局部对称空间。该领域的目标之一是完成绝对几乎简单群的弱可通算算术子群的研究,并将结果扩展到一些非算术群。进一步的目标包括研究一般半简单群的子群和正特征域上的群的弱可通约性。该提案解决了这些结果在微分几何中的潜在应用。该提案的另一个重要组成部分是同余子群问题,对于与非交换除代数相关的各向异性群,该问题仍未解决。该提案讨论了同余核中心性的新标准,预计将导致新情况下同余子群问题的解决。此外,PI 和 G. Prasad 计划写一本关于同余子群问题的书。与同余子群问题密切相关的是代数群有理点群的正规子群结构的研究;这里的目标之一是获得有限维除代数乘法群的同余子群定理的最终形式,这将完成 PI 与 Y. Segev 和 G.M. 联合进行的一系列研究。塞茨。该提案还包含许多涉及算术群的各种推广的问题,范围从任意的 Zariski 密集子群到自由群的自同构群。算术群是特殊群,其元素是具有整数项的矩阵。这个概念可以追溯到高斯关于积分二次形式的工作,在数学的许多领域中发挥着至关重要的作用,包括代数和数论的各个部分(例如自守形式理论)。近年来,算术群理论在代数和微分几何、李群和组合数学中出现了新的应用。该提案重点关注算术群理论的几个重要方面以及潜在的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Rapinchuk其他文献
Andrei Rapinchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Rapinchuk', 18)}}的其他基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 15.32万 - 项目类别:
Standard Grant
Elliptic Curves, Torsors, and L-functions
椭圆曲线、Torsors 和 L 函数
- 批准号:
1660462 - 财政年份:2017
- 资助金额:
$ 15.32万 - 项目类别:
Standard Grant
Arithmetic and Zariski-dense subgroups in algebraic groups
代数群中的算术和 Zariski 密集子群
- 批准号:
1301800 - 财政年份:2013
- 资助金额:
$ 15.32万 - 项目类别:
Standard Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
- 批准号:
1034750 - 财政年份:2010
- 资助金额:
$ 15.32万 - 项目类别:
Standard Grant
Normal Subgroups of the Groups of Rational Points of Algebraic Groups, Congruence Subgroup Problem, and Related Topics
代数群有理点群的正规子群、同余子群问题及相关主题
- 批准号:
0502120 - 财政年份:2005
- 资助金额:
$ 15.32万 - 项目类别:
Continuing Grant
Normal Subgroup Structure of the Groups of Rational Points of Algebraic Groups and of Their Special Subgroups
代数群及其特殊子群有理点群的正规子群结构
- 批准号:
0138315 - 财政年份:2002
- 资助金额:
$ 15.32万 - 项目类别:
Continuing Grant
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
- 批准号:
9970148 - 财政年份:1999
- 资助金额:
$ 15.32万 - 项目类别:
Standard Grant
The Congruence Subgroup Problem and Groups of Finite Representation Type
同余子群问题与有限表示型群
- 批准号:
9700474 - 财政年份:1997
- 资助金额:
$ 15.32万 - 项目类别:
Standard Grant
相似国自然基金
信息交流对异质性团体感知觉决策的影响研究:基于认知计算的动态优势表征
- 批准号:32300910
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分子互作研究多酚结构差异对面团体系面筋蛋白网络形成的调控机制
- 批准号:32301998
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
团体创新中的观念生成路径及其神经基础研究
- 批准号:32300900
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位置社交网络中天际线团体搜索技术研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向小团体的多模态连续情感识别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
RGPIN-2020-06146 - 财政年份:2022
- 资助金额:
$ 15.32万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
RGPIN-2020-06146 - 财政年份:2021
- 资助金额:
$ 15.32万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
DGECR-2020-00365 - 财政年份:2020
- 资助金额:
$ 15.32万 - 项目类别:
Discovery Launch Supplement
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
- 批准号:
RGPIN-2020-06146 - 财政年份:2020
- 资助金额:
$ 15.32万 - 项目类别:
Discovery Grants Program - Individual
Representations of arithmetic groups and their associated zeta functions
算术群及其相关 zeta 函数的表示
- 批准号:
FT160100018 - 财政年份:2017
- 资助金额:
$ 15.32万 - 项目类别:
ARC Future Fellowships