EAGER: Full Disclosure of Data Preparation and Use in Retrospective Studies

EAGER:全面披露回顾性研究中的数据准备和使用

基本信息

  • 批准号:
    0954268
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Although an overnight shipping company allows one to track the shipment of a package from coast to coast and a credit card company can track your purchases throughout the world, integrating, cleaning and using the various kinds of data available for engineering and planning studies in health, transportation and public infrastructure systems is extremely difficult. Such "retrospective" studies require intense scrutiny of the data and involve a myriad of decisions concerning the data and the definitions of the concepts involved to properly "clean" or prepare the data for the study. These decisions are typically written in English, if at all, and thus not automatically processable by any future user of the data. In a similar way, integrating data from multiple sources is difficult because of the details of the technology used to capture the data. The critical problems are that data from multiple sources can be hard to integrate and studies are almost never able to use data (that was carefully cleaned and scrutinized for one study) in another study. This seriously limits the opportunity to conduct larger or broader scale studies or to "re- run" studies on new data. One can envision a world where retrospective studies can be easily described, decisions about data use, data cleaning, and data integration can be precisely recorded, and operations, management, engineering, and planning activities can be informed by the results from studies as easily as we can currently track our packages as they wend their way across the country. This project envisions one solution to these problems; to devise methods and tools that will declaratively (i.e., at a high level, described in a formal language) document data manipulation activities in retrospective studies. Analysts will then be able to use this declarative specification to greatly facilitate the specification and conduct of new studies, making their jobs much easier. For example, if an analyst wants to repeat a study with new data, or with different parameters, the analyst will be able to use the declarative specifications saved from the original study, instead of having to decipher the low-level notes which may or may not have been saved from the original study. The declarative specifications will also be useful for combining the results of previous studies to create new studies. This project will focus three kinds of retrospective research studies: 1) studies from the Clinical Outcomes Research Institute (CORI), based on data concerning patient endoscopic procedures, 2) studies based on the Portland Oregon Regional Transportation Archive Listing (PORTAL), data containing years of highway loop-detector data as they conduct a study to determine the factors that correlate with certain kinds of congestion, and 3) studies based on data from the Portland, Oregon Water Bureau containing 8 years of water consumption data reported every 15 minutes from households across the city. Intellectual MeritBy attempting to bring the capability of state-of-the-art schema and data integration and data cleaning systems into a set of tools that can be used easily by analysts and can be interfaced seamlessly with existing analysis tools, the research team will make contributions to the database field by identifying separable concerns (within integration and cleaning) and by generalizing functions that are currently available in more complex, all encompassing tools. Broader Impacts The results of this project will have broad impact because they are advancing the science of retrospective studies significantly. The results will be applicable beyond the three areas being studied and will enable researchers and analysts to perform their studies more efficiently and to perform more studies. Results will be disseminated broadly, not only by the PI and co-PI through the usual publication venues, but by researchers in the three areas being studied. Major Themes/Keywords: Computer Science/Information Technology. Engineering. Social Science. Intelligent Transportation Systems. Health Systems. Water Consumption.
尽管隔夜运输公司可以跟踪包裹从一个海岸到另一个海岸的运输情况,信用卡公司可以跟踪您在世界各地的购买情况,整合、清理和使用可用于健康工程和规划研究的各种数据,交通和公共基础设施系统极其困难。这种“回顾性”研究需要对数据进行严格审查,并涉及大量有关数据的决策以及所涉及概念的定义,以正确“清理”或准备研究数据。这些决策通常是用英语编写的(如果有的话),因此任何未来的数据用户都无法自动处理。同样,由于用于捕获数据的技术的细节,集成多个来源的数据也很困难。关键问题是来自多个来源的数据可能很难整合,并且研究几乎永远无法在另一项研究中使用数据(为一项研究仔细清理和审查)。这严重限制了进行更大规模的研究或对新数据进行“重新运行”研究的机会。人们可以想象这样一个世界:可以轻松地描述回顾性研究,可以精确记录有关数据使用、数据清理和数据集成的决策,并且可以轻松地通过研究结果来了解运营、管理、工程和规划活动目前,我们可以追踪包裹在全国范围内的运输情况。该项目设想了一种解决这些问题的方法;设计方法和工具,以声明方式(即,在高层次上,以正式语言描述)记录回顾性研究中的数据操作活动。然后,分析师将能够使用此声明性规范来极大地促进新研究的规范和进行,使他们的工作变得更加轻松。例如,如果分析师想要使用新数据或不同参数重复进行研究,则分析师将能够使用从原始研究中保存的声明性规范,而不必破译可能或可能的低级注释。尚未从原始研究中保存。声明性规范对于结合以前的研究结果来创建新的研究也很有用。该项目将重点关注三类回顾性研究:1) 临床结果研究所 (CORI) 基于患者内窥镜手术数据的研究,2) 基于俄勒冈州波特兰地区交通档案清单 (PORTAL) 的研究,数据包含他们进行研究以确定与某些类型的拥堵相关的因素时使用了多年的高速公路环路检测器数据,以及 3) 基于俄勒冈州波特兰市水务局的数据进行的研究,其中包含报告的 8 年用水量数据每 15 分钟一班,来自全市各户家庭。智力优点通过尝试将最先进的模式和数据集成以及数据清理系统的能力引入一组可以被分析师轻松使用并可以与现有分析工具无缝连接的工具中,研究团队将使得通过识别可分离的关注点(在集成和清理中)并概括当前在更复杂、无所不包的工具中可用的功能,对数据库领域做出了贡献。更广泛的影响 该项目的结果将产生广泛的影响,因为它们正在显着推进回顾性研究的科学发展。研究结果将适用于正在研究的三个领域之外,并使研究人员和分析人员能够更有效地进行研究并进行更多的研究。结果将被广泛传播,不仅由 PI 和 co-PI 通过通常的出版场所传播,而且由正在研究的三个领域的研究人员传播。主要主题/关键词:计算机科学/信息技术。工程。社会科学。智能交通系统。卫生系统。用水量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lois Delcambre其他文献

Lois Delcambre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lois Delcambre', 18)}}的其他基金

EAGER: Quick Draw Semantics
EAGER:快速绘制语义
  • 批准号:
    1250340
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III-CTX-Small: Exploiting domain expertise to enhance information retrieval
III-CTX-Small:利用领域专业知识来增强信息检索
  • 批准号:
    0812260
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Project: Ensemble: Enriching Communities and Collections to Support Education in Computing
合作项目:Ensemble:丰富社区和馆藏以支持计算教育
  • 批准号:
    0840668
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Adapting Information using Superimposed Models and Structures
使用叠加模型和结构调整信息
  • 批准号:
    0534762
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Accelerated Indexing in a Domain-Specific Digital Library
SGER:特定领域数字图书馆中的加速索引
  • 批准号:
    0514238
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Project: Superimposed Tools for Active Arrangement and Elaboration of Educational Resources
合作项目:教育资源主动安排和精细化的叠加工具
  • 批准号:
    0511050
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Project: Superimposed Tools for Active Arrangement and Elaboration of Educational Resources
合作项目:教育资源主动安排和精细化的叠加工具
  • 批准号:
    0435496
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Digital Government: Harvesting Information to Sustain Our Forests
数字政府:收集信息以维持我们的森林
  • 批准号:
    9983518
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SGER: Content-Based Connections for Navigating on the NII
SGER:用于在 NII 上导航的基于内容的连接
  • 批准号:
    9502084
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

近代东北南满铁路沿线工业城市的建设和技术传播
  • 批准号:
    52378030
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
  • 批准号:
    82374014
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
内蒙古满都拉-阿巴嘎旗地区晚古生代构造体制转换期的沉积学响应研究
  • 批准号:
    42202239
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
  • 批准号:
    EP/X041395/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
  • 批准号:
    2339518
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
  • 批准号:
    2335086
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Developing a Full Life Cycle Impact Framework for Sustainable Automotive Vehicles
开发可持续汽车的全生命周期影响框架
  • 批准号:
    2904688
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了