CAREER: Fundamental cell-mineral-redox interactions in the sulfur system
职业:硫系统中基本的细胞-矿物质-氧化还原相互作用
基本信息
- 批准号:0955639
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-15 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Greater understanding of redox-active elements like sulfur and iron are key in the processes that affect problems such as ocean transitions through deep time, sour gas and oil evolution, hydrothermal chemistry and the origins of life, the supply of iron to the sea, industrial desulfurization, agricultural sulfur cycling, and metal mobility. Microorganisms have been a potentially important part of sulfur cycling for billions of years (Johnston et al., 2005; Mojzsis et al, 2007), yet many of the fundamental interactions between microorganisms and elemental sulfur are not understood. Advancing our understanding of how these systems behave requires delving into the detailed interactions between cells (bacterial, archaeal, and eukaryotic), minerals (especially nanoparticles), and water chemistry (especially redox speciation).Intellectual Merit: Elemental sulfur occurs as bulk and nanoparticulate phases and can be utilized by microorganisms for all 3 major catabolic paths through use as an electron acceptor, donor, or essentially both in the case of disproportionation. Dissolved sulfur species also interact with elemental sulfur, and those species can additionally react with metals, most importantly iron. Microorganisms must solubilize elemental sulfur in order to metabolize it, but this mineral is fundamentally different from other minerals where microbe-mineral interactions have been well studied, such as iron oxide minerals (for example Hernandez and Newman, 2001; Childers et al., 2002; Burgon et al., 2003; Lovley, 2008; Newman, 2008). Solubilizing elemental sulfur can be accomplished through interaction with organic ligands or through interactions with other sulfur species to form new soluble intermediates such as polysulfides. Investigator proposes to develop a combined in situ analytical capability to investigate sulfur speciation and elemental sulfur mineralogy in field and laboratory tests to address the following hypothesis: The size and surface character of elemental sulfur is a key component controlling sulfur cycling in biotic and abiotic reactions in many environments.Broader Impacts: Advances in fundamental cell-mineral-redox interactions in the sulfur system provide an opportunity to integrate some exciting educational experiences to engage stakeholders and professionals in health, policy, and legal fields with research goals that will yield transformative insights of value to the broad study of sulfur-based microorganisms and element cycling through time and in environmentally relevant systems. Sulfur species and minerals are importantly affected by a number of known organisms, but the level of detail proposed for elemental sulfur particle size/character and redox speciation has never been applied. When comparing the wealth of information that has come from years of investigating detailed iron oxide-microbe interactions (Newman, 2008), a detailed investigation of fundamental microbe-mineral-redox interactions involving sulfur may yield critical new insights. The application of the knowledge gained through these investigations of the sulfur system can be applied to broader thinking about similar cell-mineral-redox interactions that affect problems of human health. This opens an opportunity to advance the training of scientists to communicate results with the non-scientific public, and provide training to the medical professionals, policymakers, and legal professionals that utilize mineralogical, geochemical, and microbial information in addressing problems such as asbestos mineral exposure, groundwater arsenic contamination, and selenium toxicity. A series of classes and professional workshops will be developed, alongside a series of learning modules illustrating fundamental cell-mineral-redox interactions, to engage students and professionals in hands-on experiences of how geochemical, mineralogical, and microbial data is gathered, assessed, evaluated, and debated to arrive at reliable information. The participation of stakeholders in the practice of scientific data collection, evaluation, and debate integrated with the training of scientists with better communication skills represents not only an advance in the preparation of scientists, but an advance also in preparing professionals who will work with those scientists.
在影响问题的过程中,对氧化还原活性元素(如硫和铁)的更大了解是通过深度时间,酸气和油的进化,水热化学和生命的起源,对海洋供应,工业去硫化,农业硫磺循环和金属流动性等问题的关键。数十亿年来,微生物一直是硫循环的潜在重要组成部分(Johnston等,2005; Mojzsis等,2007),但是微生物与元素硫之间的许多基本相互作用尚不清楚。促进我们对这些系统如何行为方式的理解需要深入研究细胞(细菌,古细菌和真核)之间的详细相互作用,矿物质(尤其是纳米粒子)和水化学(尤其是氧化还原的形成)。智能优点:元素硫作为批量和纳尼诺普特阶段和纳尼诺普特式均可用的态度来实现Alsoron Syron Syron Subs san Alsroron 33受体,捐助者或基本上都是不成比例的。溶解的硫种也与元素硫相互作用,这些物种还可以与金属(最重要的是铁)反应。微生物必须溶解元素硫以代谢,但是这种矿物质与对微生物矿物质相互作用进行了充分研究的其他矿物质有根本不同,例如Hernandez and Newman和Newman,Newman,2001; Childers et al。,2002; Burgon et al。,Burgon et al。,2003; New。可以通过与有机配体的相互作用或与其他硫种类形成新的可溶性中间体(如多硫化物)来实现溶解的元素硫。研究者建议在现场和实验室测试中研究硫磺形象和元素硫矿物学的组合,以解决以下假设:元素硫的大小和表面特征是控制生物反应中硫的硫循环的关键组成部分。一些令人兴奋的教育经验,使利益相关者和专业人士参与健康,政策和法律领域,以研究目标,这些目标将对基于硫的微生物的广泛研究以及在时间和环境相关系统中的广泛研究产生价值的变革见解。硫种和矿物质受到许多已知生物的影响,但是从未应用针对元素硫粒径/特征和氧化还原物种的细节水平。在比较多年来调查详细的氧化铁微叶铁相互作用的信息时(Newman,2008),对涉及硫的基本微生物 - 矿物质 - 雷克斯相互作用的详细研究可能会产生关键的新见解。通过对硫系统的这些研究获得的知识的应用可以应用于对影响人类健康问题的类似细胞矿物 - 雷克斯相互作用的更广泛思考。这为进步科学家的培训提供了机会,以与非科学的公众交流结果,并为医学专业人员,决策者和法律专业人员提供培训,这些专业人员和法律专业人员利用矿物学,地球化学和微生物信息来解决诸如石棉矿物质暴露,地下水芳香芳烃的含量和质量的问题。将开发一系列课程和专业研讨会,以及一系列的学习模块,说明了基本的细胞 - 矿物质 - 雷克斯互动,以使学生和专业人员亲身体验如何收集,评估,评估,评估和辩论,以获取可靠的信息。利益相关者参与与具有更好沟通能力的科学家培训的科学数据收集,评估和辩论的实践,这不仅代表了科学家的准备,而且还可以提前准备与这些科学家合作的专业人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Druschel其他文献
Gregory Druschel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Druschel', 18)}}的其他基金
SusChEM: Redox and mineral controls maximizing Phosphorus mobility and bioavailability
SusChEM:氧化还原和矿物质控制最大限度地提高磷的流动性和生物利用度
- 批准号:
1560933 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Acquisition of an Advanced X-Ray Diffraction System to Support Interdisciplinary Research and Education
MRI:购买先进的 X 射线衍射系统以支持跨学科研究和教育
- 批准号:
1429241 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Geomicrobiology and Microbial Geochemistry Workshop 2013
地球微生物学和微生物地球化学研讨会 2013
- 批准号:
1346732 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Tracking chemical, isotopic, and molecular signatures of tightly coupled sulfur cycling in phototrophic and chemosynthetic microbial ecosystems
合作研究:追踪光养和化学合成微生物生态系统中紧密耦合的硫循环的化学、同位素和分子特征
- 批准号:
1124014 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Fundamental cell-mineral-redox interactions in the sulfur system
职业:硫系统中基本的细胞-矿物质-氧化还原相互作用
- 批准号:
1304352 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Tracking chemical, isotopic, and molecular signatures of tightly coupled sulfur cycling in phototrophic and chemosynthetic microbial ecosystems
合作研究:追踪光养和化学合成微生物生态系统中紧密耦合的硫循环的化学、同位素和分子特征
- 批准号:
1261423 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Shallow-sea hydrothermal systems: Micron-scale sedimentary sulfur cycling and its impact on ocean processes
合作研究:浅海热液系统:微米级沉积硫循环及其对海洋过程的影响
- 批准号:
1261424 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Shallow-sea hydrothermal systems: Micron-scale sedimentary sulfur cycling and its impact on ocean processes
合作研究:浅海热液系统:微米级沉积硫循环及其对海洋过程的影响
- 批准号:
1061350 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Project Summary - Acquisition of equipment to support environmental materials characterization at the University of Vermont
MRI:项目摘要 - 采购设备以支持佛蒙特大学的环境材料表征
- 批准号:
0922961 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Experimental Determination of Iron (Fe) Isotope Fractionations in Sulfide Minerals
合作研究:硫化矿物中铁 (Fe) 同位素分馏的实验测定
- 批准号:
0635523 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
探究人体节中胚层前体细胞自组装延伸为体节的基本原理
- 批准号:32300672
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载干细胞多孔微球的气辅微流控制备及其作为墨水基本单元打印多孔结构支架补片修复心脏的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载干细胞多孔微球的气辅微流控制备及其作为墨水基本单元打印多孔结构支架补片修复心脏的研究
- 批准号:32201183
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
解析植物叶绿体活性氧感受器的作用方式和植物光损伤调控的基本机制
- 批准号:31871397
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
不同鼠龄BALB/c小鼠肺脏DC的基本属性及其介导RSV感染后免疫应答偏移的作用机制
- 批准号:91542103
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:重大研究计划
相似海外基金
CSHL 2023 Eukaryotic DNA Replication and Genome Maintenance Conference
CSHL 2023真核DNA复制与基因组维护会议
- 批准号:
10677192 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mechanisms of human appendicular and cardiovascular comorbidities: An analysis of heterogeneity and lineage trajectories of the lateral plate mesoderm
人类四肢和心血管合并症的机制:侧板中胚层的异质性和谱系轨迹分析
- 批准号:
10642590 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
International Society for Magnetic Resonance in Medicine (ISMRM) workshop on WHATEVER: WHite Matter, Analysis, Translation, Experimental Validation, Evaluation, and Reproducibility
国际医学磁共振学会 (ISMRM) 研讨会主题为:白质、分析、翻译、实验验证、评估和再现性
- 批准号:
10757846 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
CRCNS:US-lsrael Research Proposal: To Elucidate Fundamental Mechanisms of Transformed Saliency Map to
CRCNS:美国-以色列研究提案:阐明显着图转变的基本机制
- 批准号:
10831116 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Monitor single-cell dynamics using optically computed phase microscopy in correlation with fluorescence characterization of intracellular properties
使用光学计算相位显微镜监测单细胞动力学与细胞内特性的荧光表征相关
- 批准号:
10589414 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别: