EAGER - Nanostructured Plasmonic Contacts for Enhanced Efficiency in Organic Photovoltaic Cells

EAGER - 纳米结构等离子触点可提高有机光伏电池的效率

基本信息

  • 批准号:
    0946723
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

0946723HolmesSummaryThe development of low-cost renewable and sustainable energy sources is the foremost challenge facing humanity. While solar energy conversion is currently too costly to compete with fossil fuel sources, organic photovoltaic cells (OPVs) will redefine this energy balance. OPVs can be processed using high-throughput methods, and have demonstrated efficiencies 6%. The proposed research outlines a new approach to overcome the exciton diffusion bottleneck that limits OPV absorption efficiency. Intellectual Merit: Thin film OPVs based on graded donor-acceptor heterojunctions (GHJs) will be incorporated into plasmonic nanocavity arrays to increase the absorption and power conversion efficiencies of these devices. The use of a plasmonic nanocavity permits subwavelength confinement and resonant enhancement of the optical field. The combination of a GHJ OPV with a plasmonic nanocavity array has the potential to be transformative by enabling a high level of tunability and control over the film microstructure and internal optical field distribution to realize high efficiency. A new architecture combining optical field enhancement from a plasmonic nanocavity array is introduced to overcome the exciton bottleneck and maximize absorption in OPVs. This enhancement is attractive since it is long range, enhancing absorption throughout the organic active layers. The use of a nanocavity permits the spectral response of the enhancement to be tuned to overlap with active material absorption. The OPVs proposed in this work will utilize GHJs to realize exciton dissociation. The novel use of a GHJ is attractive since it balances the need for efficient exciton diffusion (large interface area) with efficient charge collection (graded pathways for transport). The growth of GHJs is tunable, enabling a range of compositions through which to correlate morphology, exciton/charge transport, and performance. Broader Impact: Graduate students associated with this project will acquire an interdisciplinary spectrum of knowledge ranging from nanofabrication and plasmonics, to molecular photophysics and OPV performance. Students will also be educated in renewable energy, understanding the position of OPVs in the broader energy landscape. Discussions of photovoltaics and plasmonics are already being integrated into various undergraduate and graduate courses taught by the PIs. Undergraduate research opportunities will be enhanced through continuing relationships with the University of Minnesota UROP program and the National Science Foundation REU program. These activities are complemented by plans to disseminate results from the proposed work to industry via on-campus workshops and an industrial affiliates program.
0946723Holmes总结低成本可再生和可持续能源的开发是人类面临的首要挑战。虽然目前太阳能转换成本太高,无法与化石燃料来源竞争,但有机光伏电池 (OPV) 将重新定义这种能源平衡。 OPV 可以使用高通量方法进行处理,并已证明效率为 6%。拟议的研究概述了一种克服限制 OPV 吸收效率的激子扩散瓶颈的新方法。智力优点:基于分级供体-受体异质结(GHJ)的薄膜OPV将被纳入等离子体纳米腔阵列中,以提高这些设备的吸收和功率转换效率。等离子体纳米腔的使用允许亚波长限制和光场的共振增强。 GHJ OPV 与等离子体纳米腔阵列的结合具有变革的潜力,可以实现对薄膜微观结构和内部光场分布的高水平可调性和控制,从而实现高效率。引入了一种结合等离子体纳米腔阵列光场增强的新架构,以克服激子瓶颈并最大限度地提高 OPV 的吸收。这种增强很有吸引力,因为它是长距离的,增强了整个有机活性层的吸收。纳米腔的使用允许调整增强的光谱响应以与活性材料吸收重叠。这项工作中提出的 OPV 将利用 GHJ 来实现激子解离。 GHJ 的新颖用途很有吸引力,因为它平衡了有效激子扩散(大界面面积)和有效电荷收集(分级传输路径)的需求。 GHJ 的生长是可调的,从而能够形成一系列的组合物,通过这些组合物将形态、激子/电荷传输和性能关联起来。更广泛的影响:与该项目相关的研究生将获得从纳米制造和等离激元到分子光物理学和 OPV 性能的跨学科知识。学生还将接受可再生能源方面的教育,了解 OPV 在更广泛的能源领域中的地位。关于光伏和等离子体的讨论已经被纳入 PI 教授的各种本科生和研究生课程中。通过与明尼苏达大学 UROP 项目和国家科学基金会 REU 项目的持续关系,将增加本科生研究机会。这些活动还计划通过校园研讨会和工业附属计划向工业界传播拟议工作的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Holmes其他文献

Russell Holmes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Holmes', 18)}}的其他基金

The Exchange Mechanism and Exciton Migration in Organic Semiconductors
有机半导体中的交换机制和激子迁移
  • 批准号:
    1708177
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Engineering interfacial gates for enhanced functionality in organic optoelectronic devices
设计界面门以增强有机光电器件的功能
  • 批准号:
    1509121
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Investigating the Relationship Between Molecular Relaxation and Exciton Diffusion in Organic Semiconductor Materials
研究有机半导体材料中分子弛豫与激子扩散之间的关系
  • 批准号:
    1307066
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Dynamics of exciton diffusion in organic semiconductor materials
有机半导体材料中激子扩散动力学
  • 批准号:
    1006566
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Hybrid Organic-Inorganic Infrared Light-Emitting Devices using Group IV Semiconductor Nanoparticles
使用 IV 族半导体纳米颗粒的混合有机-无机红外发光器件
  • 批准号:
    0925624
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

融合DNN的纳米光子结构型等离子体阵列片上编码高光谱成像技术研究
  • 批准号:
    62375269
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
可见光诱导动态调控等离子体纳米结构的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
双频等离子体增强化学气相沉积系统中放电特性对制备碳纳米结构的影响
  • 批准号:
    12165019
  • 批准年份:
    2021
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目
等离子体辅助富缺陷三元过渡金属硫化物纳米结构的构筑及电催化性能研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    36 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of plasmonic spectroscopy using nanostructured graphene
使用纳米结构石墨烯开发等离子体光谱
  • 批准号:
    21K18874
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nanostructured Plasmonic Metal Films for Strong Coupling Interactions
用于强耦合相互作用的纳米结构等离子体金属薄膜
  • 批准号:
    557000-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    University Undergraduate Student Research Awards
Nanostructured Plasmonic Metal Films for Strong Coupling Interactions
用于强耦合相互作用的纳米结构等离子体金属薄膜
  • 批准号:
    557000-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    University Undergraduate Student Research Awards
Construction of long-rage ordered molecular array on nanostructured metals and their applications as plasmonic materials
纳米结构金属上长程有序分子阵列的构建及其作为等离子体材料的应用
  • 批准号:
    19K05589
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of nanostructured plasmonic photocatalyst for practical overall water splitting
开发用于实际整体水分解的纳米结构等离子体光催化剂
  • 批准号:
    18K04701
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了