EMSW21-RTG: Geometry and Topology
EMSW21-RTG:几何和拓扑
基本信息
- 批准号:0943787
- 负责人:
- 金额:$ 159.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to promote research and training at the highest level in topology and geometry. The program spans a broad area of geometry and topology. The theory of minimal surfaces, their structure and more generally evolution of surfaces. Riemann geometry, in particular Einstein metrics and the space of metrics. Symplectic topology and relations to mirror symmetry, and low dimensional topology. Homotopy theory and its ever closer ties to number theory. Gauge theory and its applicationsto low dimensional topology. The MIT faculty involved in this program are leaders in these areas. The program, in addition to enhancing the research environment, will provide training and mentoring at all levels, postdocs, graduate students, and undergraduates. In addition the grant will allow the math department to support a undergraduate program for underrepresented minorities.Geometry and topology remains a major theme in present-day mathematics, and actively interacts with other areas ranging from number theory to physics. New ideas that have entered the subject recently have contributed to the solution of long-standing open problems in mathematics. Moreover the areas of mathematics supported by this program impact many areas of practical importance. Minimal surfaces and evolution of surfaces have historically been important for material sciences, chemistry and chemical engineering. Symplectic topology has had applications to understanding dynamical systems and lies at the heart of current work in high energy theoretic physics in the areas of string theory and mirror symmetry. Low dimensional topology has had applications to problems in biology in particular quantifying and understanding the knotted behavior of DNA as well as topological phases in matter.
该项目旨在促进拓扑和几何学最高水平的研究和培训。该程序跨越了几何和拓扑结构。最小表面的理论,它们的结构和表面的更普遍的演变。黎曼的几何形状,特别是爱因斯坦指标和指标空间。与镜像对称性和低维拓扑的符号拓扑和关系。 同质理论及其与数字理论的紧密联系。仪表理论及其应用范围低维拓扑。 参与该计划的麻省理工学院教师是这些领域的领导者。该计划除了增强研究环境外,还将在各个级别,博士后,研究生和本科生提供培训和指导。此外,该赠款将允许数学部支持一项针对代表性不足的少数群体的本科计划。几何和拓扑仍然是当今数学的主要主题,并与从数字理论到物理学的其他领域进行积极互动。最近进入该主题的新想法有助于解决数学长期开放问题的方法。此外,该计划支持的数学领域影响了许多实际重要的领域。历史上对材料科学,化学和化学工程的最小表面和表面的演变至关重要。 符合性拓扑已经在理解动力学系统的核心方面有应用,在弦理论和镜像对称性领域中,当前工作的核心是高能理论物理学的核心。低维拓扑已应用于生物学问题,特别是量化和理解了物质中DNA的打结行为以及拓扑阶段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tomasz Mrowka其他文献
Tomasz Mrowka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tomasz Mrowka', 18)}}的其他基金
New tools for gauge theory in dimensions 3 and 4
3 维和 4 维规范理论的新工具
- 批准号:
2105512 - 财政年份:2021
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
Gauge Theory and Trivalent Graphs in Three-Manifolds
三流形中的规范理论和三价图
- 批准号:
1808794 - 财政年份:2018
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
Instantons, low dimensional topology and knotted graphs
瞬子、低维拓扑和打结图
- 批准号:
1406348 - 财政年份:2014
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
Conference: Perspectives in Mathematics and Physics
会议:数学和物理的观点
- 批准号:
0928515 - 财政年份:2009
- 资助金额:
$ 159.23万 - 项目类别:
Standard Grant
Low Dimensional Topology and Gauge Theory
低维拓扑和规范论
- 批准号:
0805841 - 财政年份:2008
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
Low dimensional topology and invariants from symplectic geometry, gauge theory, and quantum algebra
辛几何、规范理论和量子代数的低维拓扑和不变量
- 批准号:
0706979 - 财政年份:2007
- 资助金额:
$ 159.23万 - 项目类别:
Standard Grant
Mathematical Problems in General Relativity
广义相对论中的数学问题
- 批准号:
0302748 - 财政年份:2003
- 资助金额:
$ 159.23万 - 项目类别:
Standard Grant
Low Dimensional and Semi-infinite Dimensional Topology
低维和半无限维拓扑
- 批准号:
0206485 - 财政年份:2002
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
Seiberg-Witten and Instanton Floer Homologies
Seiberg-Witten 和 Instanton Floer 同源性
- 批准号:
9802480 - 财政年份:1998
- 资助金额:
$ 159.23万 - 项目类别:
Standard Grant
Low Dimensional Topology via Differential Equations
通过微分方程的低维拓扑
- 批准号:
9803166 - 财政年份:1998
- 资助金额:
$ 159.23万 - 项目类别:
Continuing grant
相似海外基金
EMSW21-RTG: Training the Research Workforce in Geometry, Topology and Dynamics
EMSW21-RTG:几何、拓扑和动力学方面的研究人员培训
- 批准号:
1045119 - 财政年份:2011
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
EMSW21-RTG: UCSB RTG in Topology and Geometry
EMSW21-RTG:拓扑和几何中的 UCSB RTG
- 批准号:
1045292 - 财政年份:2011
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
EMSW21-RTG: Research Training Group in Interactions of Representation Theory, Geometry and Combinatorics
EMSW21-RTG:表示论、几何和组合学相互作用研究培训小组
- 批准号:
0943745 - 财政年份:2010
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
EMSW21-RTG: Developing American Research Leadership in Algebraic Geometry and its Boundaries
EMSW21-RTG:发展美国在代数几何及其边界方面的研究领导地位
- 批准号:
0943832 - 财政年份:2010
- 资助金额:
$ 159.23万 - 项目类别:
Continuing Grant
EMSW21-RTG: Geometry, Topology, and Operator Algebras
EMSW21-RTG:几何、拓扑和算子代数
- 批准号:
0838703 - 财政年份:2009
- 资助金额:
$ 159.23万 - 项目类别:
Standard Grant