Interactions and self-assembly of anisotropic colloidal particles in electric fields

电场中各向异性胶体颗粒的相互作用和自组装

基本信息

  • 批准号:
    0930549
  • 负责人:
  • 金额:
    $ 27.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

0930549FurstRecent results in our laboratory demonstrate the surprisingly rich role particle shape has on the disorder to order transition of anisotropic particles in electric fields. These suggest new routes to forming complex, higher order structures from dispersions via self assembly. While spherical particles rapidly and reversibly form ordered hexagonal close packed arrays in AC electric fields, colloidal ellipsoids and dicolloids, particles resembling two fused spheres, can form unique aggregate geometries (chains at an angle with the field, particle chains with alternating orientations) and open, ordered arrays with a centered rectangular symmetry. However, particle shape may also play a critical role in the self assembly kinetics by frustrating the path of the disorder to order transition. For instance, the the lack of registry between chains of dicolloid particles initially formed in the field direction frustrates assembly into centered rectangular arrays. However, this also suggests unique possibilities for creating complex colloidal structures using mixtures of spherical and anisotropic colloids that resemble molecular compounds. In this work, we will study the field directed self assembly of homo-dicolloid particles with symmetric lobes. Even this relatively simple anisotropic shape leads to complex interparticle interactions, packing, and self assembly kinetics. We will exploit the large parameter space to create new, complex colloidal structures. This includes varying the degree of separation between the particle lobes, from slightly aspherical to kissing spheres, and altering the bulk dielectric, surface chemistry or surface conductivity of the particles, even making Janus dicolloids, using adsorbed polymers, surfactants or particle monomer chemistries. We will study the order disorder transition, including the characterization of self assembled structures and kinetics, as well as the the field induced interactions between anisotropic particles. The latter will elucidate the mechanisms of the particle polarizability and the roles of the double layer, bulk conductivity, particle dielectric properties and particle surface conductivity. Combined with the physical insight provided by our previous work on direct colloidal interaction measurements between spherical particles, this will enable us to understand and control the fieldinduced colloidal interactions on the molecular level to tailor particle self assembly. Furthermore, by mixing particles with different polarizabilities, which controls particle orientation in the field, self assembled structures with even greater complexity may be attainable. Other novel aspects of field directed assembly will be developed, including pulsed fields to anneal structures and assisted assembly using holographic optical tweezers.Intellectual Merit: Solution phase self assembly promises to be the technologically and economically optimal approach in the realization of industrial scale nano materials and devices. In essence, harnessing self assembly for man made applications mimics nature's route to the formation of functional nanostructures. The goal of this work is to develop and fundamentally validate novel approaches to self assembled structures using colloidal building blocks and external fields. We will discover new routes to forming complex self assembled structures and gain a fundamental understanding of the underlying mechanisms of particle interactions and self assembly in electric fields. The latter will lead to broad scalability of our findings across a vast parameter space of physico chemical conditions, including particle size, shape, composition (dielectric properties), surface chemistry and solution conditions.Broader impacts. In addition to the broad technical impacts, the proposed work will develop the human resources needed to sustain and grow national excellence in the science and engineering of colloidal and nanoparticle suspensions. The education and outreach impact will be amplified by sponsoring a secondary school Science, Technology, Engineering, and Mathematics (STEM) teacher as a summer research fellow in our laboratory, in coordination with the Delaware?s NSF sponsored Nature InSpired Engineering Research Experiences for Teachers (NISE-RET) program.
0930549Furst 我们实验室的最新结果表明,粒子形状对电场中各向异性粒子的无序到有序转变具有令人惊讶的丰富作用。这些提出了通过自组装从分散体形成复杂、高阶结构的新途径。虽然球形颗粒在交流电场、胶体椭球体和双胶体中快速可逆地形成有序六角形密堆积阵列,但类似于两个熔融球体的颗粒可以形成独特的聚集几何形状(与场成一定角度的链、具有交替方向的颗粒链)和开放,具有中心矩形对称性的有序数组。然而,颗粒形状也可能通过阻碍无序到有序转变的路径,在自组装动力学中发挥关键作用。 例如,最初在场方向上形成的双胶体颗粒链之间缺乏配准,阻碍了组装成居中矩形阵列。然而,这也表明使用类似于分子化合物的球形和各向异性胶体的混合物创建复杂胶体结构的独特可能性。 在这项工作中,我们将研究具有对称叶的同型双胶体颗粒的场定向自组装。即使这种相对简单的各向异性形状也会导致复杂的颗粒间相互作用、堆积和自组装动力学。我们将利用大参数空间来创建新的、复杂的胶体结构。这包括改变颗粒瓣之间的分离程度,从轻微非球形到亲吻球体,以及改变颗粒的体介电质、表面化学或表面电导率,甚至使用吸附的聚合物、表面活性剂或颗粒单体化学物质制造Janus双胶体。 我们将研究有序无序转变,包括自组装结构和动力学的表征,以及各向异性粒子之间的场诱导相互作用。 后者将阐明颗粒极化的机制以及双层、体电导率、颗粒介电性能和颗粒表面电导率的作用。 结合我们之前对球形颗粒之间直接胶体相互作用测量的工作提供的物理见解,这将使我们能够在分子水平上理解和控制场诱导的胶体相互作用,以定制颗粒自组装。此外,通过混合具有不同极化率的粒子,控制粒子在场中的方向,可以获得更复杂的自组装结构。将开发场定向组装的其他新颖方面,包括脉冲场对结构进行退火和使用全息光镊辅助组装。 智力优点:溶液相自组装有望成为实现工业规模纳米材料和纳米材料的技术和经济上的最佳方法。设备。从本质上讲,利用自组装进行人造应用模仿了自然形成功能纳米结构的途径。这项工作的目标是开发并从根本上验证使用胶体构件和外部场进行自组装结构的新方法。 我们将发现形成复杂自组装结构的新途径,并对电场中粒子相互作用和自组装的基本机制有基本的了解。后者将导致我们的发现在物理化学条件的巨大参数空间中具有广泛的可扩展性,包括颗粒尺寸、形状、成分(介电性能)、表面化学和溶液条件。更广泛的影响。 除了广泛的技术影响外,拟议的工作还将开发维持和发展胶体和纳米粒子悬浮液科学和工程领域国家卓越水平所需的人力资源。通过赞助一名中学科学、技术、工程和数学 (STEM) 教师作为我们实验室的暑期研究员,并与特拉华州 NSF 赞助的自然启发教师工程研究体验项目协调,将扩大教育和外展影响(NISE-RET)计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Furst其他文献

Eric Furst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Furst', 18)}}的其他基金

2018 Colloidal, Macromolecular and Polyelectrolyte Solutions: The Science and Application of Soft Materials in Hard(er) Environments
2018胶体、高分子和聚电解质解决方案:硬环境中软材料的科学与应用
  • 批准号:
    1812917
  • 财政年份:
    2018
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
ISS: Kinetics of nanoparticle self-assembly in directing fields
ISS:定向场中纳米粒子自组装的动力学
  • 批准号:
    1637991
  • 财政年份:
    2016
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
REU SITE: Interfacing Sustainable Energy and Materials
REU 站点:连接可持续能源和材料
  • 批准号:
    1460932
  • 财政年份:
    2015
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Responsive, shape-changing endoskeletal droplets
响应性、形状变化的内骨骼液滴
  • 批准号:
    1336132
  • 财政年份:
    2013
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Microrheology of colloidal glasses and gels
合作研究:胶体玻璃和凝胶的微观流变学
  • 批准号:
    1235955
  • 财政年份:
    2012
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Active and Nonlinear Microrheology
合作研究:主动和非线性微流变学
  • 批准号:
    0730292
  • 财政年份:
    2007
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
Colloidal interactions and micromechanics in 2D and 3D gels
2D 和 3D 凝胶中的胶体相互作用和微观力学
  • 批准号:
    0553656
  • 财政年份:
    2006
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
Colloidal Micromechanics and Near-Contact Interactions
胶体微观力学和近接触相互作用
  • 批准号:
    0500321
  • 财政年份:
    2005
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant
CAREER: Bridging Nano, Micro and Macro-Scales in Complex Fluids
职业:连接复杂流体中的纳米、微观和宏观尺度
  • 批准号:
    0238689
  • 财政年份:
    2003
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Continuing Grant
NER: New Nanoscale Probes of Molecular Motors
NER:分子马达的新型纳米探针
  • 批准号:
    0304051
  • 财政年份:
    2003
  • 资助金额:
    $ 27.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
  • 批准号:
    72302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于序贯递药体系实现对非酒精性脂肪肝的高渗给药和长效治疗
  • 批准号:
    32001001
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Inducing Off-pathway Assembly of HIV Gag Polyprotein with Computationally Designed Peptides
用计算设计的肽诱导 HIV Gag 多蛋白的非途径组装
  • 批准号:
    10724495
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
Chemical Biology Approaches to Studying Collagen IV Stability
研究胶原蛋白 IV 稳定性的化学生物学方法
  • 批准号:
    10723042
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
Understanding Immune-Stromal Interactions in Tissue Homeostasis and Inflammation
了解组织稳态和炎症中的免疫基质相互作用
  • 批准号:
    10714085
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
Developing controlled release immune complexes to treat multiple sclerosis
开发控释免疫复合物来治疗多发性硬化症
  • 批准号:
    10679346
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
Structure and Function of Direct Delivery Peptides
直接递送肽的结构和功能
  • 批准号:
    10717736
  • 财政年份:
    2023
  • 资助金额:
    $ 27.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了