NEESR Payload: Fiber Optic Method for Buried Pipelines Health Assessment after Earthquake-Induced Ground Movement

NEESR 有效负载:地震引起的地面运动后埋地管道健康评估的光纤方法

基本信息

  • 批准号:
    0936493
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-02-01 至 2012-01-31
  • 项目状态:
    已结题

项目摘要

This award (NEESR Payload) is an outcome of the NSF 09-524 program solicitation ''George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) Research (NEESR)'' competition and includes the Princeton University (lead institution of this NEESR Payload project) and University of Michigan at Ann Arbor (lead institution of NEESR Award CMMI-0724022 that will accommodate this NEESR Payload). This project will utilize the NEES equipment site at the Cornell University. Close collaboration will be realized with other partners of the NEESR Award CMMI-0724022, Merrimack College and Purdue University.Natural disasters, in particular earthquakes, can cause damage to pipelines which transport life- and society-sustaining supplies, such as water or hydrocarbons. Earthquake damage to pipelines can have disastrous humanitarian, social, economic, and ecologic consequences. Consequently, real-time, and automatic or on-demand assessment of damage to pipelines after the earthquake is essential for early emergency response, efficient preparation of rescue plans, and mitigation of the disastrous consequences. Assessment is particularly challenging for buried pipelines. A method for real-time, automatic or on-demand, assessment of health condition of buried pipelines after the earthquake will be developed in this Payload project. The focus will be on damage detection and localization generated by earthquake induced ground displacement. The method will be based on the use of distributed fiber-optic sensing technology and will be applicable to both concrete and steel pipelines. A distributed fiber-optic sensor can be represented by a single several-kilometer long cable that is sensitive at every point along its length. Hence, one distributed sensor can replace thousands of traditional point sensors, and is less difficult and more economical to install and operate. Both, strain (deformation) and temperature will be monitored: strain (deformation) because the earthquake induced ground displacement actually strains (deforms) the pipe, while temperature sensing is proposed since the damage of a pipeline is often correlated with leakage of transported material that can be indirectly detected as a change of thermal parameters in the surrounding soil. Besides the assessment of damage, the method can be used for long-term structural health monitoring and operational monitoring, which will serve as an important input for lifetime maintenance activities.The proposed method will help mitigate disastrous consequences of the earthquake-induced damage to pipelines, but it will also help lifetime maintenance activities of pipelines through structural health monitoring and operational monitoring. This will have a direct broad impact on society through an increase in safety for the human population and goods, the containment of economical losses for industry and users, and the preservation of the environment. Broadened participation will be achieved through teamwork with other NEESR award partners, and in particular with Merrimack College, MA, which is a non-PhD-granting institution. The outcomes of the project will be included in Princeton University courses at both the undergraduate level (structural analysis course) and graduate level (structural health monitoring course). Results of the project will be disseminated by the Principal Investigator at Princeton University and jointly with partners of NEESR Award CMMI-0724022 to relevant industries, practitioners, and the broader public in the form of newsletters, website pages, papers published in scientific journals and professional magazines, documents, posters, and presentations via web-seminars (webinars). The project necessitates research in several disciplines and consequently, a multi-disciplinary collaboration will be established and the project will be presented in multi-disciplinary workshops and conferences at the national and international level. Data from this project will be archived and made available to the public through the NEES data repository.
该奖项(NEESR 有效负载)是 NSF 09-524 计划征集“乔治·E·布朗地震工程模拟 (NEES) 研究网络 (NEESR)”竞赛的结果,包括普林斯顿大学(地震工程模拟 (NEES) 研究网络 (NEESR))该 NEESR 有效负载项目)和密歇根大学安娜堡分校(NEESR 奖 CMMI-0724022 的领导机构,将容纳该 NEESR 有效负载)。该项目将利用康奈尔大学的 NEES 设备场地。 将与 NEESR 奖 CMMI-0724022、梅里马克学院和普渡大学的其他合作伙伴实现密切合作。自然灾害,特别是地震,可能会对输送生命和社会维持物资(例如水或碳氢化合物)的管道造成损坏。地震对管道的损坏可能会造成灾难性的人道主义、社会、经济和生态后果。 因此,实时、自动或按需评估地震后管道损坏情况对于早期应急响应、有效制定救援计划和减轻灾难性后果至关重要。 对于埋地管道的评估尤其具有挑战性。该Payload项目将开发一种实时、自动或按需评估地震后埋地管道健康状况的方法。 重点将放在地震引起的地面位移产生的损坏检测和定位上。 该方法将基于分布式光纤传感技术的使用,并且适用于混凝土和钢管道。 分布式光纤传感器可以用一根几千米长的电缆来表示,该电缆沿其长度的每个点都很敏感。 因此,一个分布式传感器可以取代数千个传统点传感器,并且安装和操作难度较小且更经济。 应变(变形)和温度都将被监测:应变(变形)是因为地震引起的地面位移实际上使管道产生应变(变形),而温度传感则被提出,因为管道的损坏通常与所输送材料的泄漏相关。可以间接检测到周围土壤热参数的变化。 除了损伤评估外,该方法还可用于长期结构健康监测和运行监测,这将作为终身维护活动的重要输入。所提出的方法将有助于减轻地震引起的管道损坏的灾难性后果,但它也将通过结构健康监测和运行监测来帮助管道的终身维护活动。 这将通过提高人口和货物的安全性、遏制工业和用户的经济损失以及保护环境,对社会产生直接广泛的影响。扩大参与范围将通过与其他 NEESR 奖励合作伙伴的团队合作来实现,特别是与马萨诸塞州梅里马克学院(一所非博士学位授予机构)的合作。 该项目的成果将纳入普林斯顿大学本科课程(结构分析课程)和研究生课程(结构健康监测课程)。该项目的结果将由普林斯顿大学的首席研究员与NEESR奖CMMI-0724022的合作伙伴共同以时事通讯、网站页面、在科学期刊和专业期刊上发表的论文等形式向相关行业、从业者和更广泛的公众传播。杂志、文件、海报和通过网络研讨会(网络研讨会)进行的演示。 该项目需要多个学科的研究,因此,将建立多学科合作,并且该项目将在国家和国际层面的多学科研讨会和会议上进行介绍。该项目的数据将被存档并通过 NEES 数据存储库向公众开放。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Branko Glisic其他文献

Branko Glisic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Branko Glisic', 18)}}的其他基金

Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329801
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Scalable Intelligent Backscatter-Based RF Sensor Network for Self-Diagnosis of Structures
CPS:中:协作研究:用于结构自诊断的可扩展智能反向散射射频传感器网络
  • 批准号:
    2038761
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: Structural Identification & Health Monitoring using Temperature-Driven Data
合作研究:结构识别
  • 批准号:
    1434455
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Fiber Optic Method for Bridge Health Assessment Based on Long-Gauge Sensors
基于长规格传感器的桥梁健康评估光纤方法
  • 批准号:
    1362723
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

单作动器失效状态下星载有效载荷主被动混合隔振方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
空间天文卫星有效载荷数据建模研究
  • 批准号:
    11903058
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
新型模块化轨道无绳电梯高有效载荷比无轭部直线电机系统关键基础问题
  • 批准号:
    51677111
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
强干扰下高空飞艇载荷平台基于特征模型的智能自适应控制研究
  • 批准号:
    61603320
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
宽带通信卫星有效载荷数字处理容错技术研究
  • 批准号:
    61501527
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Information Theoretic Approach to Explore Malware Payload and Command and Control
探索恶意软件有效负载和命令与控制的信息论方法
  • 批准号:
    2887741
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Leveraging CRISPR RNA-guided DNA Transposases for Gene Insertion at the CFTR Locus
利用 CRISPR RNA 引导的 DNA 转座酶在 CFTR 基因座插入基因
  • 批准号:
    10606698
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
An early-intervention gene-editing therapeutic for Pulmonary Arterial Hypertension
肺动脉高压的早期干预基因编辑疗法
  • 批准号:
    10603715
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
PayLoad – Industrial Research to link Commercial Vehicle Smart EV Charging with Advanced Grid Demand Analytics
PayLoad — 工业研究将商用车智能电动汽车充电与先进的电网需求分析联系起来
  • 批准号:
    10087180
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Collaborative R&D
Sugar-coating our way to genetically modified mesenchymal stem cells: Glycocalyx-inspired cell culture substrates that prime mesenchymal stem cells for polycation-mediated pDNA delivery.
糖衣我们的转基因间充质干细胞之路:糖萼启发的细胞培养基质为间充质干细胞提供聚阳离子介导的 pDNA 传递。
  • 批准号:
    10647120
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了