CPS: Medium: Collaborative Research: Scalable Intelligent Backscatter-Based RF Sensor Network for Self-Diagnosis of Structures

CPS:中:协作研究:用于结构自诊断的可扩展智能反向散射射频传感器网络

基本信息

  • 批准号:
    2038761
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This Cyber-Physical Systems (CPS) grant will advance structural health monitoring of concrete structures by relying on data acquired by a novel sensing technology with unprecedented scalability and spatial resolution. Modern society depends critically on sound and steadfast functioning of a variety of engineering structures and infrastructures, such as bridges, buildings, pipelines, geotechnical structures, aircrafts, wind turbines, and industrial facilities. Due to aging, massive urbanization, and climate change, there is a growing need for accurate and reliable assessment of the health condition, performance, and operation of these structures in order to ensure their continuous functioning and safe use. The researched technology enables pervasive and scalable sensing of concrete structures with high resolution by transforming concrete into a smart self-sensing material, thereby enabling reliable long-term structural health monitoring. This in turn contributes to the nation’s sustainability and resilience and to advancing the nation’s prosperity, welfare, and security. The project advances multiple core research areas in structural health monitoring including CPS system architectures using embedded devices, multi-parameter sensing and networking based on radio frequency sensors, and machine learning for accurate and reliable data analytics. The research outcomes are highly translational to various other CPS domains. The project also contributes to secondary education and outreach activities in multiple ways as well as to undergraduate and graduate education. The aim of this project is to create a novel sensing system comprised of radio frequency sensors that are pervasively embedded in large volumes of concrete structures and that sense their localities using radio frequency properties. The objective is the assessment of key parameters that reflect the behavior of the monitored structure under operational conditions, such as deformation, temperature, and humidity, as well as detection and characterization of damages. The project has the following intellectual contributions: 1) Passive radio frequency-based sensing that operates over a wide range of frequencies; architectures of smart exciters and networked radio frequency sensors that communicate among themselves via backscatter modulation; solar-powered radio frequency exciter platform that powers the sensors. 2) Energy-based sensing and network optimization of the radio frequency sensor network in terms of its monitoring ability and network connectivity given the constraints on the available harvested power at the exciters. 3) Machine learning methods for function estimation based on the principle of ensemble modeling with Gaussian processes and applied to self-localization and to inference of three-dimensional distributions of material parameters within large volumes of concrete structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项网络物理系统 (CPS) 拨款将依靠具有前所未有的可扩展性和空间分辨率的新型传感技术获取的数据来推进混凝土结构的结构健康监测。由于老化、城市化和气候变化,越来越需要对桥梁、建筑物、管道、岩土结构、飞机、风力涡轮机和工业设施等基础设施的健康状况、性能和性能进行准确且高度可靠的评估。和因此,所研究的技术通过将混凝土转变为智能自感知材料,能够以高分辨率对混凝土结构进行普遍且可扩展的传感,从而实现可靠的长期结构健康监测。这反过来又有助于国家的可持续性和复原力,并促进国家的繁荣、福利和安全。该项目推进了结构健康监测的多个核心研究领域,包括使用嵌入式设备、多参数传感和基于无线电的网络的 CPS 系统架构。频率传感器,该项目还以多种方式为中等教育和推广活动以及本科生和研究生教育做出了贡献。创建一种由射频传感器组成的新型传感系统,该系统普遍嵌入大量混凝土结构中,并利用射频特性来感知其位置,其目标是评估反映被监测结构在运行条件下行为的关键参数。 ,如变形、温度和湿度,该项目具有以下智力贡献:1)在广泛的频率范围内运行的基于无源射频的传感;通过反向散射调制相互通信的智能激励器和网络射频传感器的架构。 ; 为传感器供电的太阳能射频激励器平台 2) 考虑到激励器可获取功率的限制,射频传感器网络在其监测能力和网络连接方面进行基于能量的传感和网络优化。 )基于高斯过程系综建模原理的函数估计机器学习方法,应用于自定位和推断大量混凝土结构中材料参数的三维分布。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Roadmap on measurement technologies for next generation structural health monitoring systems
  • DOI:
    10.1088/1361-6501/acd135
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Laflamme,Simon;Ubertini,Filippo;Milillo,Pietro
  • 通讯作者:
    Milillo,Pietro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Branko Glisic其他文献

Branko Glisic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Branko Glisic', 18)}}的其他基金

Collaborative Research: EAGER: Reliable Monitoring and Predictive Modeling for Safer Future Smart Transportation Structures
合作研究:EAGER:可靠的监控和预测建模,打造更安全的未来智能交通结构
  • 批准号:
    2329801
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Structural Identification & Health Monitoring using Temperature-Driven Data
合作研究:结构识别
  • 批准号:
    1434455
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Fiber Optic Method for Bridge Health Assessment Based on Long-Gauge Sensors
基于长规格传感器的桥梁健康评估光纤方法
  • 批准号:
    1362723
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NEESR Payload: Fiber Optic Method for Buried Pipelines Health Assessment after Earthquake-Induced Ground Movement
NEESR 有效负载:地震引起的地面运动后埋地管道健康评估的光纤方法
  • 批准号:
    0936493
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了